Данный раздел сайта радиосхемы посвящён исключительно металлоискателям. По этой теме написаны уже тысячи страниц нашего форума, где обсуждаются все популярные самодельные металлоискатели. Отдельно создана ветка про находки, сделанные металлоискателями, собранными своими руками – различные монеты, медальоны, ножи и залотые украшения. Более опытные радиолюбители могут попробовать свои силы в сборке металлодетекторов на микроконтроллерах – к ним относятся Клон, Шанс (на Atmega8), Крот и некоторые другие, имеющие отличную повторяемость модели. А если вы делаете только первые шаги в изготовлении металлоискателей, обратите внимание на приборы попроще – Терминатор, volksturm, Малыш FM или Анкер. Хотя последний будет гораздо сложнее многих моделей собранных с применением МК. Для совсем начинающих радиолюбителей представленно несколько совсем уже простых схем металлодетекторов на биениях. В ряде случаев (конечно при грамотной настройке) они не намного хуже работают, а по своей экономичности и простоте сборки даже выигрывают, по сравнению с такими детекторами, как Whites или Каспер. Оправдана ли сборка металлоискателя своими руками? Безусловно. При цене готового промышленного устройства около 1000$, в случае самостоятельной сборки можно потратить не больше сотни. В общем выбирайте сами, все схемы проверены и многократно повторены. Список металлоискателей нашего сайта смотрите ниже. Металлоискатель или металлодетектор предназначен для обнаружения предметов, по своим электрическим и/или магнитным свойствам отличающихся от среды, в которой они находятся. Попросту говоря, он позволяет находить металл в земле. Но не только металл, и не только в грунте. Металлодетекторами пользуются службы досмотра, криминалисты, военные, геологи, строители для поиска профилей под обшивкой, арматуры, сверки планов-схем подземных коммуникаций, и люди многих других специальностей. Металлоискатели своими руками чаще всего делают любители: кладоискатели, краеведы, члены военно-исторических объединений. Им, начинающим, и предназначена в первую очередь данная статья; описанные в ней устройства позволяют найти монету с советский пятак на глубине до 20-30 см или железяку с канализационный люк примерно в 1-1,5 м под поверхностью. Однако этот самодельный приборчик может пригодиться и на хозяйстве при ремонте или на стройке. Наконец, обнаружив в земле центнер-другой брошенной трубы или металлоконструкций и сдав находку в металлолом, можно выручить приличную сумму. А подобных сокровищ в земле российской точно больше, чем пиратских сундуков с дублонами или боярско-разбойничьих кубышек с ефимками.
Немного больше внимания по сравнению с остальными будет уделено металлоискателю «Пират», см. рис. Этот прибор достаточно прост для повторения начинающими, но по своим качественным показателям не уступает многим фирменным моделям ценой до $300-400. А главное – он показал отличную повторяемость, т.е. полную работоспособность при изготовлении по описаниям и спецификациям. Схемотехника и принцип действия «Пирата» вполне современны; по его настройке и методике использования имеется достаточно руководств. Принцип действияМеталлоискатель действует по принципу электромагнитной индукции. В общем схема металлоискателя состоит из передатчика электромагнитных колебаний, передающей катушки, приемной катушки, приемника, схемы выделения полезного сигнала (дискриминатора) и устройства индикации. Отдельные функциональные узлы часто объединяют схемотехнически и конструктивно, напр., приемник и передатчик могут работать на одну катушку, приемная часть сразу выделяет полезный сигнал и т. п.Принцип действия металлоискателя Катушка создает в среде электромагнитное поле (ЭМП) определенной структуры. Если в зоне его действия оказывается электропроводящий предмет, поз. А на рис., в нем наводятся вихревые токи или токи Фуко, которые создают его собственное ЭМП. В результате структура поля катушки искажается, поз. Б. Если же предмет не электропроводящий, но обладает ферромагнитными свойствами, то он искажает исходное поле за счет экранирования. В том и другом случае приемник улавливает отличие ЭМП от исходного и преобразует его в акустический и/или оптический сигнал.
Детектор или сканер?В коммерческих источниках дорогие высокочувствительные металлодетекторы, напр. Терра-Н, нередко называют геосканерами. Это неверно. Геосканеры действуют по принципу измерения электропроводности грунта по разным направлениям на разной глубине, эта процедура называется боковым каротажем. По данным каротажа компьютер строит на дисплее картинку всего, что в земле, включая различные по свойствам геологические слои. РазновидностиОбщие параметрыПринцип действия металлодетектора возможно воплотить технически разными способами соответственно назначению прибора. Металлоискатели для пляжного золотоискательства и строительно-ремонтного поиска внешне могут быть похожи, но существенно отличаться по схеме и техническим данным. Чтобы правильно сделать металлоискатель, нужно четко представлять себе, каким требованиям он должен удовлетворять для данного рода работы. Исходя из этого, можно выделить следующие параметры поисковых детекторов металла:
Дискриминация, в свою очередь, параметр составной, т.к. на выходе металлоискателя наличествует 1, максимум 2 сигнала, а величин, определяющих свойства и расположение находки, больше. Тем не менее, с учетом изменения реакции прибора во время приближения к объекту, в нем выделяются 3 составляющих:
Рабочая частота
Особняком стоят импульсные металлоискатели. У них первичный ток в катушку поступает импульсами. Задав частоту следования импульсов в пределах НЧ, а их длительность, которая определяет спектральный состав сигнала, соответствующей диапазонам ПЧ-ВЧ, можно получить металлодетектор, совмещающий в себе положительные свойства НЧ, ПЧ и ВЧ или перестраиваемый. Метод поискаНасчитывается не менее 10 методов поиска предметов с помощью ЭМП. Но такие, как, скажем, метод непосредственной оцифровки ответного сигнала с компьютерной обработкой – удел профессионального применения. Самодельный металлоискатель схемотехнически строят более всего следующими способами:
Без приемникаПараметрические металлоискатели в некотором роде выпадают из определения принципа действия: в них нет ни приемника, ни приемной катушки. Для детекции используется непосредственно влияние объекта на параметры катушки генератора – индуктивность и добротность, а структура ЭМП значения не имеет. Изменение параметров катушки ведет к изменению частоты и амплитуды вырабатываемых колебаний, что фиксируется разными способами: измерением частоты и амплитуды, по изменению тока потребления генератора, измерением напряжения в петле ФАПЧ (системы фазовой автоподстройки частоты, «подтягивающей» ее к заданному значению) и др. Параметрические металлоискатели просты, дешевы и помехоустойчивы, но пользование ими требует определенных навыков, т.к. частота «плывет» под влиянием внешних условий. Чувствительность у них слабая; более всего используются как магнитодетекторы. С приемником и передатчикомУстройство приемопередающего металлоискателя показано на рис. в начале, к пояснению принципа действия; там же описан и принцип работы. Такие приборы позволяют добиться наилучшей эффективности в своем диапазоне частот, но сложны схемотехнически, требуют особо качественной системы катушек. Приемопередающие металлоискатели с одной катушкой называются индукционными. Их повторяемость лучше, т.к. проблема правильного расположения катушек относительно друг друга отпадает, но схемотехника сложнее – нужно выделить слабый вторичный сигнал на фоне сильного первичного.
До щелчкаМеталлоискатели с накоплением фазы, или фазочувствительные, бывают либо однокатушечными импульсными, либо с 2-мя генераторами, работающими каждый на свою катушку. В первом случае используется тот факт, что импульсы при переизлучении не только расплываются, но и задерживаются. Во времени сдвиг фаз нарастает; когда он достигает определенной величины, дискриминатор срабатывает и в наушниках раздается щелчок. По мере приближения к объекту щелчки становятся чаще и сливаются в звук все более высокого тона. Именно на этом принципе построен «Пират». Во втором случае техника поиска та же, но работают 2 строго симметричных электрически и геометрически генератора, каждый на свою катушку. При этом вследствие взаимодействия их ЭМП происходит взаимная синхронизация: генераторы работают в такт. При искажении общего ЭМП начинаются срывы синхронизации, слышимые как те же щелчки, а затем тон. Двухкатушечные металлоискатели со срывом синхронизации проще импульсных, но менее чувствительны: проницание их в 1,5-2 раза меньше. Дискриминация в обоих случаях близка к отличной. По пискуБиения 2-х электросигналов – сигнал с частотой, равной сумме или разности основных частот исходных сигналов или кратных им – гармоник. Так, напр., если на входы специального устройства – смесителя – подать сигналы с частотами 1 МГц и 1 000 500 Гц или 1,0005 МГц, а к выходу смесителя подключить наушники или динамик, то услышим чистый тон 500 Гц. А если 2-й сигнал будет 200 100 Гц или 200,1 кГц, случится то же самое, т.к. 200 100 х 5 = 1 000 500; мы «поймали» 5-ю гармонику. В металлоискателе на биениях действуют 2 генератора: опорный и рабочий. Катушка колебательного контура опорного маленькая, защищенная от посторонних влияний, или его частота стабилизирована кварцевым резонатором (попросту – кварцем). Контурная катушка рабочего (поискового) генератора – поисковая, и его частота зависит от наличия предметов в зоне поиска. Перед поиском рабочий генератор настраивают на нулевые биения, т. е. до совпадения частот. Полного нуля звука как правило не добиваются, а настраивают до очень низкого тона или хрипа, так удобнее искать. По изменению тона биений судят о наличии, величине, свойствах и расположении объекта.
Металлоискатели на гармониках в общем сложнее импульсных, однако работают на любом грунте. Правильно изготовленные и настроенные, они не уступают импульсным. Об этом можно судить хотя бы по тому, что золотоискатели-пляжники никак не сойдутся во мнениях, что же лучше: импульсник или на биениях? Катушка и прочееСамое распространенное заблуждение начинающих радиолюбителей – абсолютизация схемотехники. Мол, если схема «крутая», то все будет тип-топ. Относительно металлоискателей это вдвойне неверно, т.к. их эксплуатационные достоинства сильнейшим образом зависят от конструкции и качества изготовления поисковой катушки. Как выразился некий курортный старатель: «Находимость детектора должна тянуть карман, а не ноги». При разработке прибора его схему и параметры катушки подгоняют друг к другу до получения оптимума. Определенная схема с «чужой» катушкой если и заработает, то до заявленных параметров не дотянет. Поэтому, выбирая прототип для повторения, смотрите прежде всего описание катушки. Если оно неполное или неточное – лучше строить другой прибор. О размерах катушкиБольшая (широкая) катушка эффективнее излучает ЭМП и глубже «просветит» грунт. Ее зона поиска шире, что позволяет уменьшить «находимость ногами». Однако, если в зоне поиска окажется крупный ненужный предмет, его сигнал «забьет» слабый от искомой мелочи. Поэтому желательно брать или делать металлодетектор, рассчитанный на работу с катушками разного размера.
МонопетляТрадиционный тип катушки детектора металла т. наз. тонкая катушка или Mono Loop (одинарная петля): кольцо из многих витков эмалированного медного провода шириной и толщиной раз в 15-20 меньше среднего диаметра кольца. Достоинства катушки-монопетли – слабая зависимость параметров от типа грунта, сужающаяся книзу зона поиска, что позволяет, двигая детектор, точнее определять глубину и расположение находки, и конструктивная простота. Недостатки – малая добротность, отчего в процессе поиска «плывет» настройка, подверженность помехам и расплывчатая реакция на объект: работа с монопетлей требует значительного опыта пользования данным конкретным экземпляром прибора. Самодельные металлоискатели начинающим рекомендуется делать с монопетлей, чтобы без особых проблем получить работоспособную конструкцию и приобрести с ней поисковый опыт. ИндуктивностьПри выборе схемы, чтобы убедиться в достоверности обещаний автора, и тем более при самостоятельном конструировании или доработке, нужно знать индуктивность катушки и уметь ее рассчитывать. Даже если вы делаете металлоискатель из покупного набора, индуктивность все равно нужно проверить измерениями или расчетом, чтобы не ломать потом голову: почему, все вот вроде исправно, а не пищит. Калькуляторы для расчета индуктивности катушек имеются в интернете, но компьютерная программа все случаи практики предусмотреть не может. Поэтому на рис. дана старая, десятилетиями проверенная номограмма для расчета многослойных катушек; тонкая катушка – частный случай многослойной. Номограмма для расчета многослойных катушек Для расчета поисковой монопетли номограммой пользуются следующим образом:
Поиск артефактов под землей — довольно популярное занятие. Для кого-то, это профессия, кто-то просто увлекается археологией. Существуют многочисленные группы кладоискателей: как романтиков, так и прагматичных добывателей ценностей. Всех этих людей объединяет одна страсть: поиск металлических предметов, спрятанных на различной глубине. Если у вас есть точная карта с указанием места захоронения клада, либо планы проведения боев во время войны, это не гарантирует успех. Можно перелопатить тонны грунта, а искомый предмет будет спокойно лежать в паре метров от места активного поиска. Для поиска золота, и менее ценных металлов, вам потребуется металлоискатель, который можно сделать своими руками.
Не будем вдаваться в тонкости, это тема другой статьи. Проще говоря: если вы нашли золотое кольцо на пляже, либо горсть советских монет в лесу — проблем, связанных с применением электронных средств поиска не будет. А вот за извлеченные бронзовые ложки возрастом от 100 лет и старше, можно получить реальный срок или крупный штраф. Тем не менее приборы для поиска металлических предметов в толще земли свободно продаются, а желающие сэкономить могут сделать металлоискатель своими руками в домашних условиях. Принцип работы устройстваВ отличие от детекторов грунта, работающих с использованием волн различной частоты или ультразвука, металлоискатель (фабричный, или созданный своими руками), работает с индуктивностью. Катушка излучает электромагнитное поле, которое затем анализируется приемником. Если в зоне действия оказывается любой предмет, который проводит электроток, либо имеет ферромагнитные свойства — формат поля искажается. Точнее сказать, под действием активного поля катушки, объект формирует собственное. Это событие фиксируется приемником, и генерируется оповещение: перемещается стрелка прибора, звучит тональный сигнал, загораются световые индикаторы. Зная методику работы, можно рассчитать электрическую схему, и создать мощный металлоискатель своими руками. Сложность конструкции зависит только от наличия элементной базы и вашего желания. Рассмотрим несколько популярных вариантов, как собрать самодельный металлоискатель: Так называемая «бабочка»Такое прозвище получено из-за характерной формы площадки, на которой расположены катушки индуктивности. Расположение элементов связано с принципом работы. Схема выполнена в виде двух генераторов, работающих на одной частоте. При подключении к ним одинаковых катушек, создается индукционный баланс. Стоит попасть в электромагнитное поле постороннему предмету, обладающему электропроводимостью, как баланс поля разрушается. Генераторы реализуются на микросхемах NE555. На иллюстрации изображена типовая схема такого прибора. Катушка для металлоискателя (их две, на схеме: L1 и L2) делается своими руками из провода сечением 0.5–0.7 мм². Идеальный вариант — трансформаторная обмоточная медная жила в лаковой изоляции (извлекается из любого ненужного трансформатора). Характеристики не обязательно выдерживать с ювелирной точностью, при одном условии: катушки должны быть одинаковыми. Примерные параметры: диаметр 190 мм, в каждой катушке ровно 30 витков. Собранное изделие должно быть монолитным. Для этого витки прихватываются монтажной нитью, и заливаются трансформаторным лаком. Если этого не сделать, вибрация витков будет сбивать схему с настроенного баланса. Электрическая схемаЕсть два варианта изготовления:
Любая пайка «на соплях» может подвести в полевых условиях, и вам будет обидно за потраченное впустую время. Так же, как и металлоискатель на транзисторах, прибор на NE555 нуждается в точной настройке перед использованием. На схеме видно три переменных резистора:
Питание достаточно универсальное: 9–12 вольт. Можно подобрать АКБ от источника бесперебойного питания, или собрать блок питания из аккумуляторов формата ААА. Неплохой вариант — батареи 18650 (их еще используют для вейпа). Настройка «бабочки»Принцип работы описан выше, поэтому просто разберем технологию. Выставляем все резисторы в среднее положение, и обеспечиваем срыв синхронизации генераторов. Для этого складываем катушки «восьмеркой», и перемещаем их друг относительно друга, пока писк не перерастет в потрескивание. Это и есть срыв синхронизации. Фиксируем кольца, и вращаем резистор R1 до появления устойчивого потрескивания с ровными интервалами. Поднося к месту перехлеста катушек (это и есть очка поиска) металлические предметы, добейтесь устойчивого писка. Чувствительность регулируем резистором R2. Остается подстройка резистором R3, который используется скорее для корректировки падения напряжения в источнике питания. Механическая частьШтанга для металлоискателя своими руками делается из легкой пластиковой трубы, либо из дерева. Использование алюминия нежелательно, поскольку он будет мешать работе. Схему и органы управления можно спрятать в герметичный корпус (например, распаечная коробка для проводки). Искатель «бабочка» готов к работе. ПиратЕще одна популярная импульсная модель для начинающих кладоискателей — металлоискатель «Пират» Его также легко сделать своими руками, подробная инструкция в двух вариантах:
Питание желательно приблизить к 12 вольтам, поскольку качество работы зависит от напряжения. Печатные платы уже опробованы, оба варианта на иллюстрации. Катушка (в данном случае одна) изготавливается из той же трансформаторной проволоки 0.5 мм. Оптимальный диаметр 20 мм, количество витков 25. Поскольку мы делаем металлоискатель «Пират» своими руками, внешний дизайн отходит на второй план. Подойдут любы материалы, которые вы готовы были выбросить. Рукоятку лучше выполнить разъемной, для удобства транспортировки. Помним, что использование металлов недопустимо. Чувствительность регулируется двумя переменными резисторами в реальном времени, при проведении поиска. Никакая точная подстройка генератора не требуется. А если вам удастся качественно загерметизировать корпус, можно заняться поиском «сокровищ» в пляжной полосе прибоя, и даже на дне водоема. Подводный металлоискатель своими руками сделать сложнее, но он даст неоспоримое преимущество перед конкурентами. Улучшение характеристикГлубинный металлоискатель своими руками без дополнительных затрат можно сделать из готового «Пирата». Для этого можно пойти двумя способами:
Металлоискатель «Пират» можно собрать на популярном контроллере «Ардуино». Пользоваться таким прибором удобнее, но дискриминации металлов по-прежнему не будет. Разобравшись, как сделать металлоискатель своими руками для любительских задач, кратко разберем несколько серьезных моделей. Металлоискатель Clone PI W своими рукамиПо сути, это удешевленный вариант профессионального искателя Clone PI-AVR, только вместо ЖК дисплея применяется линейка светодиодов. Это не так удобно, но по-прежнему позволяет контролировать глубину залегания артефактов. Оптимальный по цене вариант — на микросхеме CD4066 и микроконтроллере ATmega8. Разумеется, под это решение есть и макет печатной платы, только кнопки управления выносятся на отдельную панель. Программирование ATmega8 — это тема отдельной статьи, если вы работали с такими контроллерами, никаких сложностей не возникнет. Мощный металлоискатель Clone PI W, сделанный своими руками, позволяет находить металл не глубине более метра, правда без дискриминации. Искатель «Шанс»Похожая схема на контроллере ATmega8 называется «Шанс». Принцип работы аналогичный, только появилась возможность отсеивания (частичной дискриминации) черных металлов. Также проработан рисунок печатной платы, который можно с успехом заменить классической «макеткой» для Ардуино «Терминатор 3» своими рукамиЕсли вам нужен самодельный металлоискатель с дискриминацией металлов, обратите внимание на эту модель. Схема достаточно сложная, но ваши труды окупаются найденными монетами, которые могут оказаться золотыми. Особенность «Терминатора» состоит в разнесении приемной и передающей катушек. Для испускания сигнала изготавливается кольцо 200 мм. Для него укладывается 30 витков провода, затем он разрезается, в итоге мы получаем 2 полу-катушки общей емкостью 60 витков (смотреть схему). Приемная катушка располагается внутри, 48 витков диаметром 100 мм. Настройка производится с помощью осциллографа, после достижения оптимальных результатов по амплитуде, обмотки фиксируются в корпусе с помощью заливки эпоксидной смолой. Затем производится опытная практическая настройка переключателя дискриминации. Для этого используются реальные объекты из различных металлов, а на переключателе режимов наносится их тип (после проверки). Радиолюбителями прорабатывается усовершенствованный вариант «Терминатор 4», но практического экземпляра еще нет. Простые детекторы металла из готовых электроприборов
Вне зависимости от сложности схемы, изготовление самодельного металлоискателя потребует от вас достаточно времени и сил. Поэтому из любопытства, такие приборы не делают. А вот для профессионального использования — это отличная альтернатива фабричным экземплярам. Видео по теме |
|
При помощи металлоискателя, схема которого показана на рисунке можно обнаружить 20-ти рублевую монету на глубине до 100 мм, а крышку водопроводного люка или ведро на глубине до 1 метра.
Как работает металлоискатель
В основе прибора два LC генератора на логических элементах D1.1, D1.2 и D1.4, D1.5. Частота первого генератора является образцовой, её можно изменять (изменяя чувствительность в процессе поиска) в некоторых пределах подстройкой переменного конденсатора С1. При этом частота изменяется от 300 кГц до 600 кГц. Частота второго генератора в исходном состоянии около 460 кГц, и изменяется при изменении индуктивности внешней объемной катушки L2.
Импульсы обеих частот нормируются по уровню элементами D1.3 и D1.6 и поступают на диодный смеситель на диодах VD1 VD2. Разность этих частот выделяется на конденсаторе С13 и через регулятор громкости звучания R3 поступает на двухкаскадный УЗЧ на транзисторах VT1-VT3. Полученная разность частот воспроизводится динамической головкой В! и воспринимается на слух, как низкий тон, увеличивающийся по высоте при приближении к металлическому предмету.
Наличие достаточно мощного УЗЧ позволяет использовать прибор в условиях высокого уровня внешних шумов и не пользоваться наушниками.
Для намотки катушки образцового генератора используется ферритовое кольцо с внешним диаметром 10 мм, катушка содержит 60 витков провода ПЭВ 0,12, намотка равномерная по всему кольцу.
Поисковая катушка намотана в кольце из полихлорвиниловой трубки диаметром 12 мм. Из этой трубки согнуто кольцо диаметром 200мм. В полости этого кольца наматывается 60 витков провода ПЭВ 0,31 (намотка ведется не по кольцу, а внутри кольца — диаметр одного витка равен примерно 200 мм).
После намотки кольцо обернуто алюминиевой лентой (от старого бумажного конденсатора), эта лента соединяется с общим проводом, и затем кольцо обматывается несколькими слоями изоляционной ленты для придания механической прочности конструкции.
Питается прибор от батареи напряжением 9 В. Настройка сводится к подстройке частоты измерительного генератора. Для этого нужно установить ротор С1 в среднее положение и подобрать С6 таким образом, чтобы был звук из динамика. И при этом вращением ротора C6 около среднего положения можно было установить звук самого низкого тона.
Конструктивно прибор смонтирован на одной печатной плате, которая помещена в пластмассовую коробку. Для подключения поисковой катушки используется стандартный разъем для аудиоаппаратуры на пять штырьков.
В приборе использованы такие детали: микросхема К176 ЛЕ2 или К561 ЛЕ2. вместо германиевых транзисторов в УЗЧ можно использовать и кремниевые соответствующей структуры. Динамическая головка любого типа.
Если будет использоваться высокоомные головные телефоны — можно отказаться от УЗЧ, включив их параллельно С13. Переменный конденсатор КЛ180, но подходит любой от транзисторных приемников, если на максимальную емкость более 300 пф, L1 — должна содержать 50 витков.
Диаметр поисковой катушки не обязательно должен быть 200 мм, практически возможен любой, нужно учитывать, что с уменьшением диаметра увеличивается чувствительность к мелким предметам, но уменьшается глубина обнаружения крупных, и на оборот.
ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ
Почему именно Volksturm был назван лучшим металлоискателем? Главное — схема реально простая и реально рабочая. Из множества схем металлоискателей, которые я лично делал, именно здесь всё просто, глубинобойно и надёжно! Тем более при своей простоте, в металлодетекторе есть хорошая схема дискриминации — определение железо или цветной металл находится в земле. Сборка металлоискателя заключается в безошибочной пайке платы и настройке катушек в резонанс и в ноль на выходе входного каскада на LF353. Ничего тут суперсложного нет, было бы желание и мозги. Смотрим конструктивное исполнение металлоискателя и новую усовершенствованную схему Volksturm с описанием.
Так как по ходу сборки возникают вопросы, чтоб сэкономить ваше время и не заставлять перелистывать сотни страниц форума, здесь приведены ответы на 10 самых популярных вопросов. Статья в процессе написания, так что некоторые пункты будут дополнены позже.
1. Принцип работы и обнаружения целей этого металлоискателя?
2. Как проверить Работает ли плата металлоискателя?
3. Какой резонанс выбрать?
4. Какие конденсаторы лучше?
5. Как настроить резонанс?
6. Как сводить катушки в ноль?
7. Какой провод для катушек лучше?
8. Какие детали и чем можно заменить?
9. От чего зависит глубина поиска целей?
10. Питание металлоискателя Volksturm?
Принцип работы металлоискателя Volksturm
Постараюсь в двух словах о принципе работы: передача,прием и баланс индукции. В поисковом датчике металлоискателя устанавливают 2 катушки — передающую и приемную. Присутствие металла изменяет индуктивную связь между ними (в том числе и фазу), что влияет на принимаемый сигнал, который затем обрабатывается блоком индикации. Между первой и второй микросхемой стоит коммутатор управляемый импульсами генератора сдвинутого по фазе относительно передающего канала (т.е. когда передатчик работает, приемник отключен и наоборот если приемник включен передатчик отдыхает, а приемник спокойно ловит отраженный сигнал в этой паузе). Итак, вы включили металлоискатель и он пищит. Отлично, если пищит — значит многие узлы работают. Давай разберёмся почему именно он пищит. Генератор на у6Б постоянно генерирует тональный сигнал. Далее он поступает на усилитель на двух транзисторах, но унч не откроется (не пропустит тон) пока напряжение на выходе у2Б (7-й вывод) не разрешит ему этого. Данное напряжение выставляется изменением режима с помощью этого самого резистора трэш. Им надо выставить такое напряжение, чтоб унч почти открылся и пропустил сигнал с генератора. И входные пару милливольт с катушки металлоискателя пройдя усилительные каскады, превысят этот порог и он откроется окончательно и динамик запищит. Теперь проследим прохождение сигнала, точнее сигнала отклика. На первом каскаде (1-у1а) будет пару милливольт, можно до 50. На втором каскаде (7-у1Б) это отклонение увеличится, на третьем(1-у2А) будет уже пару вольт. Но без отклика везде на выходах по нулям.
Как проверить работает ли плата металлоискателя
Вообще усилитель и ключ (CD 4066) проверяется пальцем на входной контакт RX при максимальном сопротивлении сенс и максимальным фоном на динамике. Если изменение фона есть при нажатии пальцем на секунду, то ключ и операционники работают, далее подключаем катушки RX с конденсатором контура параллельно, конденсатор на катушке TX последовательно, ложим одну катушку на другую и начинаем сводить в 0 по минимальному показанию переменного тока на первой ноге усилителя U1A. Далее берем что-нибудь большое и железное и проверяем есть в динамике реакция на металл или нет. Проверим напряжение на у2Б (7-й вывод) оно должно регулятором трэш, меняться +-пару вольт. Если нет — проблема в данном каскаде ОУ. Для начала проверки платы отключаем катушки и включаем питание.
1. Должен идти звук при положении регулятора сенс на максимальное сопротивление, коснёмся пальцем на РХ — если есть реакция, все операционники работают, если нет — проверяем пальцем начиная с u2 и меняем (обследуем обвязку) нерабочего ОУ.
2. Работа генератора проверяется программой частотомер. Штекер от наушников припаять к 12 выводу CD4013 (561ТМ2) предусмотрительно выпаяв р23 (чтоб звуковую карту не спалить). В звуковой плате использовать In-lane. Смотрим частоту генерации, ее стабильность на 8192 гц. Если она сильно смещена, то надо выпаивать конденсатор с9, если и после она не четко выделена и/или много частотных всплесков рядом — заменяем кварц.
3. Проверили усилители и генератор. Если все исправно, но все равно не работает — меняем ключ (CD 4066).
Какой резонанс катушек выбрать
При подключении катушки в последовательный резонанс,увеличивается ток в катушке и общее потребление схемы. Увеличивается расстояние обнаружения цели, но это только на столе. На реальном грунте, земля будет чувствоваться тем сильнее, чем больше ток накачки в катушке. Лучше включение параллельного резонанса, а поднимать чутье входными каскадами. Да и батареек хватит намного дольше. Не смотря на то, что последовательный резонанс применяется во всех фирменных дорогих металодетекторах, в Штурме нужен именно параллельный. В импортных, дорогих приборах, хорошая схематика отстройки от земли, поэтому в этих приборах можно позволить последовательный.
Какие конденсаторы лучше установить в схему металлоискателя
Тип подключаемого к катушке конденсатора не при чём, а если экспериментально поменяли два и увидели что с одним из них резонанс лучше, то просто один из якобы 0,1 мкФ реально имеет 0,098 мкФ, а другой 0,11. Вот и разница между ними по резонансу получается. Я использовал советские К73-17 и зелёные импортные подушки.
Как настроить резонанс катушек металлоискателя
Катушка, как самый лучший вариант, получается из штукатурных терок, склеенных эпоксидной смолой с торцов до нужного вам размера. Причем, центральная ее часть с куском ручки этой самой терки, которая обрабатывается до одного широкого ушка. На штанге же, наоборот, вилка из двух ушек крепления. Такое решение позволяет решить проблему деформирования катушки, при затягивании пластикового болта. Пазы для обмоток делают обычным выжигателем, затем установка ноля и заливка. От холодного конца ТХ, оставим 50 см. провода, который изначально не заливать, а свить из него маленькую катушечку (диаметром 3 см.) и разместить ее внутри RX, перемещая и деформируя ее в небольших пределах, можно добиться точного ноля, но делать это лучше на улице, размещая катушку у земли (как при поиске) при отключенном GEBе, если он есть, затем окончательно залить смолой. Тогда отстройка от земли, работает более- менее сносно (исключение сильно минерализованный грунт). Такая катушка получается легкой, прочной, мало подверженной термодеформации, а обработанная и окрашенная очень симпатичная. И еще одно наблюдение: если металлоискатель собран с отстройкой от грунта (GEB) и при центральном расположении движка резистора выставить ноль очень маленькой шайбой, диапазон регулировки GEBа +- 80-100 мВ. Если установить ноль большим предметом- монета 10-50 коп. диапазон регулировки увеличивается до +- 500-600 мВ. За напряжением в процессе настройки резонанса не гонитесь — у меня при 12в питания около 40В при последовательном резонансе. Чтоб появилась дискриминация конденсаторы в катушках включаем параллельно (последовательное включение нужно только на этапе подбора кондеров для резонанса) — на черные металлы будет протяжный звук, цветные — короткий.
Или ещё проще. Подключаем катушки по очереди к передающему ТХ выходу. Настраиваем в резонанс одну, а настроив её — другую. Пошагово: Подключили, параллельно катушке ткнули мультиметром на пределе переменные вольты, так-же параллельно катушке припаяли конденсатор 0.07-0.08 мкф, смотрим показания. Допустим 4 В — очень слабо, не в резонансе с частотой. Ткнули параллельно первому конденсатору второй небольшой ёмкости — 0.01 мкф (0.07+0.01=0.08). Смотрим — уже показал вольтметр 7 В. Отлично, увеличим ещё ёмкость, подключим на 0.02 мкФ — смотрим на вольтметр, а там 20 В. Великолепно, едем дальше — ещё докинем пару тысяч пик ёмкости. Ага. Уже начало падать, откатим назад. И так добиться максимальных показаний вольтметра на катушке металлоискателя. Затем аналогично с другой (приёмной) катушкой. Настроить на максимум и подключить обратно к приёмному гнезду.
Как сводить катушки металлоискателя в ноль
Для настройки нуля подключаем тестер на первую ногу LF353 и понемногу начинаем сжимать, растягивать катушку. После залива из эпоксидки — нолик точно убежит. Поэтому надо заливать не всю катушку, а оставить места для регулировки, и после высыхания доводить до нуля и заливать окончательно. Взять кусок шпагата и половину катушки обвязать одним витком к середине (к центральной части ,месту соединения двух катушек) вставить в петлю шпагата кусочек палочки после чего ее крутить (натягивать шпагат) — катушка будет сжиматься, поймав нолик шпагат пропитать клеем, после почти полного высыхания опять подправить нолик повернув палочку еще чуть-чуть и залить шпагат окончательно. Или проще: Передающая закреплена в пластмассе неподвижно, а приёмную накладываем на первую на 1 см, типа как свадебные кольца. На первом выводе U1A будет писк 8 кГц — можно контролировать вольтметром переменного тока, но лучше просто высокоомными наушниками. Так вот приёмную катушку металоискателя надо то надвигать, то сдвигать с передающей до тех пор, пока на выходе ОУ писк не стихнет до минимума (или показания вольтметра не упадут до нескольких милливольт). Всё, катушка сведена, фиксируем.
Какой провод для поисковых катушек лучше
Провод для намотки катушек не имеет значения. От 0.3 до 0.8 пойдёт любой, всё равно придётся немного подбирать ёмкость для настройки контуров в резонанс и на частоту 8.192 кГц. Конечно и более тонкий провод вполне подходит, просто чем он толще, тем добротность и, как следствие чутьё — лучше. Но если намотать 1 мм — будет довольно тяжеловато таскать. На листе бумаги рисуем прямоугольник 15 на 23 см. От левого верхнего и нижнего угла откладываем по 2,5 см, и соединяем их линией. С правым верхним и нижними углами проделываем тоже самое, но откладываем по 3 см. По средине нижней части ставим точку и по точке слева и справа на расстоянии 1 см. Берем фанеру, накладываем этот эскиз и вбиваем гвоздики во все точки указанные. Берем провод ПЭВ 0,3 и мотаем 80 витков провода. Но честно говоря без разницы сколько витков. Всё равно частоту 8 кГц будем выставлять в резонанс конденсатором. Сколько намотали — столько и намотали. Я мотал 80 витков и конденсатор 0.1 мкф, если намотаете допустим 50 — ёмкость соответственно где-то 0.13 мкф поставить придётся. Далее, не снимая с шаблона обматываем катушку толстой ниткой — типа как обматывают жгуты проводов. После покрываем катушку лаком. Когда высохнет, снимаем катушку с шаблона. Затем идёт обмотка катушки изоляцией — фум лента или изолента. Далее — обмотка приёмной катушки фольгой, можно взять ленту из электролитических конденсаторов. TX катушку можно не экранировать. Не забудьте оставить РАЗРЫВ в экране 10 мм, по середине катушки. Дальше идёт обмотка фольги луженым проводом. Этот провод вместе с начальным контактом катушки у нас будет массой. И наконец обмотка катушки изолентой. Индуктивность катушек около 3,5мГ. Емкость получается около 0,1мкф. Что касается заливки катушки эпоксидкой, то я не заливал её вообще. Просто туго замотал изолентой. И ничего, два сезона отходил с этим металлоискателем без ухода настроек. Обратите внимание на влагоизоляцию схемы и поисковых катушек, ведь придётся по мокрой траве косить. Всё должно быть герметично — иначе попадёт влага и настройка поплывёт. Ухудшится чувствительность.
Какие детали и чем можно заменить
Транзисторы:
BC546 — 3шт или КТ315.
BC556 — 1шт или КТ361
Операционники:
LF353 — 1шт или меняйте на более распространенную TL072.
LM358N — 2шт
Цифровые микросхемы:
CD4011 — 1шт
CD4066 — 1шт
CD4013 — 1шт
Резисторы постоянные, мощностью 0,125-0,25 Вт:
5,6К — 1шт
430К — 1шт
22К — 3шт
10К — 1шт
390К — 1шт
1К — 2шт
1,5К — 1шт
100К — 8шт
220К — 1шт
130К — 2шт
56К — 1шт
8,2К — 1шт
Резисторы переменные:
100К — 1шт
330К — 1шт
Конденсаторы неполярные:
1нФ — 1шт
22нФ — 3шт (22000пФ = 22нФ = 0. 022мкФ)
220нФ — 1шт
1мкФ — 2шт
47нФ — 1шт
10нФ — 1шт
Конденсаторы электролитические:
220мкФ на 16В — 2шт
Динамик миниатюрный.
Кварцевый резонатор на 32768 Гц.
Два сверхярких светодиода разного цвета.
Если вы не можете достать импортные микросхемы, вот отечественные аналоги: CD 4066 — К561КТ3, CD4013 — 561ТМ2, CD4011 — 561ЛА7, LM358N — КР1040УД1. У микросхемы LF353 — прямого аналога нет, но смело ставим LM358N или лучше TL072, TL062. Совсем не обязательно ставить операционный усилитель именно — LF353, я просто поднял усиление на U1A заменив резистор в цепи отрицательной обратной связи 390 кОм на 1 мОм — чувствительность значительно возросла на процентов 50, правда после этой замены ушёл ноль, пришлось на катушку в определённом месте приклеить скотчем кусочек алюминиевой пластинки. Советские три копейки чувствует по воздуху на расстоянии 25 сантиметров и это при питании 6 вольт, потребляемый ток без индикации — 10 мА. И не забудь про панельки — удобство и простота настройки значительно повысятся. Транзисторы КТ814, Кт815 — в передающую часть металлоискателя, КТ315 в УНЧ. Транзисторы — 816 и 817 желательно подобрать с одинаковым коэффициентом усиления. Заменимы на любые соответствующей структуры и мощности. В генераторе металлоискателя установлен специальный часовой кварц на частоту 32768 Гц. Это стандарт абсолютно для всех кварцевых резонаторов, которые стоят в любых электронных и электромеханических часах. В том числе и наручных и дешёвых китайских настенных/настольных. Архивы с печатной платой для Volksturm SMD варианта и для Volksturm+GEB (вариант с ручной отстройкой от земли).
От чего зависит глубина поиска целей
Чем больше диаметр катушки металлоискателя, тем глубже чутьё. А вообще, глубина обнаружения цели данной катушкой, зависит прежде всего от размера самой цели. Но при увеличении диаметра катушки наблюдается уменьшение точности обнаружения объекта и даже иногда потеря мелких целей. Для объектов с монету, этот эффект наблюдается при увеличении размера катушки свыше 40 см. Итого: большая поисковая катушка, имеет большую глубину обнаружения и больший захват, но менее точно обнаруживает цель, чем маленькая. Большая катушка идеальна для поиска глубоких и больших целей, таких как клады и крупные объекты.
По форме катушки делятся на круглые и эллиптичные (прямоугольные). Эллиптичная катушка металлоискателя обладает лучшей избирательностью по сравнению с круглой, потому что ширина магнитного поля у нее меньше и в поле ее действия попадает меньше посторонних объектов. Но круглая имеет большую глубину обнаружения и лучшую чувствительность к цели. Особенно на слабо минерализованных грунтах. Круглая катушка наиболее часто используется при поиске с металлоискателем.
Катушки диаметром меньше 15 см называют маленькими, катушки диаметром 15-30 см называют средними и катушки свыше 30 см — большие. Большая катушка генерирует большее электромагнитное поле, поэтому она имеет большую глубину обнаружения, чем маленькая. Большие катушки генерируют большое электромагнитное поле и соответственно, имеют большую глубину обнаружения и покрытие при поиске. Такие катушки используются для просмотра больших площадей, но при их использовании, может возникнуть проблема на сильно замусоренных площадках потому, что в поле действия больших катушек может попасться сразу несколько целей и металлоискатель среагирует на более крупную цель.
Электромагнитное поле маленькой поисковой катушки тоже маленькое, поэтому с такой катушкой лучше всего искать на территориях сильно замусоренных всякими мелкими металлическими предметами. Маленькая катушка идеальна для обнаружения маленьких объектов, но имеет небольшую площадь покрытия и сравнительно небольшую глубину обнаружения.
Для универсального поиска хорошо подойдут средние катушки. Такой размер поисковой катушки сочетает в себе достаточную глубину поиска и чувствительность к целям с разными размерами. Я делал каждую катушку диаметром примерно 16 см и обе эти катушки укладывал в круглую подставку из-под старого монитора 15″. В таком варианте глубина поиска этого металлоискателя будет такая: алюминиевая пластина 50×70 мм — 60 см, гайка М5-5 см, монетка — 30 см, ведро — около метра. Данные значения получены на воздухе, в земле будет на 30% меньше.
Питание металлоискателя
Отдельно схема металлоискателя тянет 15-20 мА, при подключенной катушке + 30-40 мА, итого вместе до 60 мА. Конечно в зависимости от типа применяемого динамика и светодиодов это значение может изменяться. Простейший случай — питание взял 3 (или даже две) последовательно подключенные литий ионные батарейки от мобил на 3,7В и при заряде разряженных аккумуляторов, когда подключаем любой блок питания на 12-13в, ток заряда начинается от 0,8А и падает до 50ма за час и тогда вообще не надо что-то добавлять, хотя ограничительный резистор конечно же не помешает. Как вообще самый простейший вариант — крона на 9В. Но учтите, что металлоискатель съест её за 2 часа. Но для настройки этот вариант питания самое оно. Крона при любых обстоятельствах не выдаст большой ток, который может спалить что-то в плате.
Самодельный металлоискатель
А теперь описание процесса сборки металлодетектора от одного из посетителей. Так как из приборов имею только мультиметр, скачал с инета виртуальную лабораторию Записных О.Л. Собрал адаптер, простенький генератор и прогнал в холостую осциллограф. Вроде показывает какую-то картинку. Далее занялся поиском радиодеталей. Так как печатки в основном выкладывают в формате «lay», скачал «Sprint-Layout50». Выяснил, что такое лазерно-утюжная технология изготовления печатных плат и как их травить. Вытравил плату. К этому времени все микросхемы были найдены. Что не нашел у себя в сарайчике, пришлось покупать. Приступил к пайке перемычек, резисторов, сокетов микросхем, и кварца из китайского будильника на плату. Периодически проверяя сопротивление на шинах питания чтобы не было соплей. Решил для начала собрать цифровую часть прибора, как наиболее легкую. То-есть генератор, делитель и коммутатор. Собрал. Поставил микросхему генератора (К561ЛА7) и делитель (К561ТМ2). Микросхемы б/ушные, выдрал из каких-то плат, обнаруженных в сарайчике. Подал питание 12В контролируя ток потребления по амерметру, 561ТМ2 стала теплой. Заменил 561ТМ2, подал питание – ноль эмоций. Меряю напряжение на ногах генератора – на 1 и 2 ногах 12В. Меняю 561ЛА7. Включаю – на выходе делителя, на 13 ноге есть генерация (наблюдаю на виртуальном осциллографе)! Картинка правда не ахти какая, но за неимением нормального осциллографа – пойдет. Но на 1, 2 и 12 ногах ничего нет. Значит генератор работает, нужно менять ТМ2. Установил третью микросхему делителя – красота на всех выходах есть генерация! Для себя сделал вывод, что выпаивать микросхемы нужно как можно аккуратнее! На этом первый шаг постройки сделан.
Теперь настраиваем плату металлоискателя. Не работал регулятор «SENS» — чувствительность, пришлось выкинуть конденсатор C3 после этого регулировка чувствительности заработала как надо. Не нравился звук возникающий в крайнем левом положении регулятора «THRESH» — порог, избавился от этого заменив резистор R9 цепочкой из последовательно соединённых резистор на 5,6 кОм + конденсатор на 47,0 мкФ (отрицательный вывод конденсатора со стороны транзистора). Пока нет микросхемы LF353 вместо неё поставил LM358, с ней советские три копейки чувствует по воздуху на расстоянии 15 сантиметров.
Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Обмотки TX и RX у меня содержат по 100 витков провода диаметром 0,4. Начинаем сведение на столе, без корпуса. Просто чтоб было два обруча с проводами. А чтоб убедиться в работоспособности и возможности сведения вообще — разведём катушки друг от дрга на полметра. Тогда ноль будет точно. Затем наложив катушки внахлёст примерно 1см (как свадебные кольца) сдвигать — раздвигать. Точка нуля может быть довольно точная и поймать её сразу нелегко. Но она есть.
Когда, я поднял усиление в RX тракте МД, он начал работать неустойчиво на максимальной чувствительности, это проявлялось в том что после прохождения над целью и её обнаружении выдавался сигнал, но он продолжался и после того когда цели перед поисковой катушкой ни какой уже небыло, это проявлялось в виде прерывистых и колеблющихся звуковых сигналов. При помощи осциллографа была обнаружена и причина этого: при работе динамика и незначительной просадке питающего напряжения уходит «ноль» и схема МД переходит в автоколебательный режим, выйти из которого можно только загрубив порог срабатывания звукового сигнала. Это меня не устраивало поэтому я поставил по питанию КР142ЕН5А + сверх яркий белый светодиод чтобы поднять напряжение на выходе интегрального стабилизатора, стабилизатора на более высокое напряжение у меня небыло. Такой светодиод можно использовать даже для подсветки поисковой катушки. Динамик подключил до стабилизатора, МД после этого стал сразу очень послушный всё начало работать как надо. Думаю Volksturm действительно лучший самодельный металлоискатель!
Недавно была предложенна данная схема доработки, что позволит превратить Volksturm S в Volksturm SS + GEB. Теперь прибор станет обладать хорошим дискриминатором а также селективностью металлов и отстройкой от грунта, прибор паяется на отдельной плате и подключается вместо конденсаторов с5 и с4. Схема доработки и печатная плата в архиве. Отдельная благодарность за информацию по сборке и настройке металлоискателя всем, кто принимал участие в обсуждении и модернизации схемы, особенно помогли в подготовке материала Электродыч, феска, xxx, slavake, ew2bw, redkii и другие коллеги радиолюбители.
Форум по металлоискателям
Схема металлоискателя «Пират», очень популярная и понятная даже начинающему радиолюбителю. Металлоискатель Пират обладает довольна неплохими характеристиками, ни смотря на простоту схемы и доступность деталей. Собирается легко, за вечер, не требует практически ни каких настроек и прошивок, начинает работать сразу после сборки! Ниже представлю подробную инструкцию по сборке металлоискателя Пират!
Потребляемый ток 30-40 мА
Напряжение питания 9-14 вольт
Дискриминации нет, реагирует на все металлы
Чувствительность монета 25 миллиметров — 20 см
Крупные металлические предметы — 150 см
Для работы металлоискателя Пират, требуется напряжение 9-14 вольт. Можно использовать обычные батарейки или аккумуляторы типа AA или две кроны соединённые параллельно, но я бы посоветовал потратить немного денег и купить аккумулятор для бесперебойника, его легко можно закрепить на штанге металлоискателя и заряда будет хватать на долго. Так же, можно использовать и батарею от шурупавёрта, кстати по началу, я именно её и использовал!
Поисковая катушка для металлоискателя Пират, тоже изготавливается несложно. Наматывается на оправе 190 мм. и содержит 25 витков провода ПЭВ 0.5 мм. Катушку можно намотать на пяльце для вышивания, кстати этот способ довольно распространенный. Лично я беру обычную кастрюля, наматываю на ней катушку и стягиваю всё это изолентой, затем делаю каркас из тонкой фанеры и закрепляю её на нём. Тут как говорится, каждому своё, кому как удобно.
Скачать список деталей
[ads1]
Металлоискатель пират состоит из передающего и приёмного узлов. Передающий узел состоит из генератора импульсов который собирается на микросхеме NE555 и мощного ключа, на транзисторе IRF740. Приёмный узел состоит из микросхемы К157УД2 и транзистора BC547.
На самом деле, детали достаточна распространенные но если всё таки вы не смогли их найти, попробуйте применить аналоги. Таймер NE555 можно заменить на отечественный аналог КР1006ВИ1, Вместо транзистор IRF740, можно поставить любой биполярный NPN структуры с Нкэ не ниже 200 вольт, можно даже выпаять из энергосберегающей лампы или зарядки от телефона, на крайний случай, подойдет даже КТ817. Транзисторы BC557 и BC547, на отечественные КТ3107 и КТ3102. У операционного усилителя К157УД2 есть полный аналог КР1434УД1В, так же его можно заменить на импортный TL072, но в этом случае, нужно будет переделать распиновку платы, так как у него 8 ног. Металлоискатель Пират на TL072 у меня тоже есть, схема и плата лежат в общем архиве. Кстати генератор импульсов можно собрать и на транзисторах:
Для начала конечно же нужно подготовить плату. Для этого открывает программу Sprint-Layout и печатаем заготовку нашей будущей платы, затем переносим рисунок любым удобным способом на подготовленную плату, протравливаем её и насверливаем отверстия для деталей. Я использую технологию ЛУТ, хотя лазерного принтера у меня нет, делаю на работе.
Но когда нет возможности напечатать на лазерном принтере, то можно сделать рисунок на струйном, затем отрезать стеклотекстолик нужной формы, приложить рисунок к плате и острым предметом отметить дырочки, затем насверлить и перманентным маркером нарисовать дорожки вручную. Ну или через копирку перевести.
Обязательно нужно зачистить плату мелкой наждачной бумагой и обезжирить ацетоном перед нанесением рисунка, так и изображение хорошо переведётся и процесс травления будет быстрее и надёжнее. После того как плата протравится, необходимо снова ацетоном стереть тонер или маркер и немного потереть наждачной бумагой.
Затем берём паяльник и лудим дорожки оловом. После лужения, обязательно стираем ацетоном лишнюю канифоль, дабы избежать проблем в будущем. По желанию, можно прозвонить дорожки.
Теперь необходимо припаять все детали на плату. Для этого так же открываем печатку в программе Sprint-Layout и смотрим где какие детали располагаются. Я настоятельно советую вам, поставить панельки для микросхем, на всякий случай. Первым делом припаяйте перемычки, их в схеме 2, и одна находится под микросхемой NE555, так что если вы про неё забудете, неисправность будет найти сложно, так как я уверен, вы за эти перемычки и не вспомните! В качестве перемычки, подойдут ножки от резисторов.
Когда все детали на месте, остаётся только припаять отводы на переменные резисторы, катушку, динамик и питание.
Правильно собранная схема начинает работать сразу, без каких либо настроек.Катушка как я говорил выше, наматывается на оправе 19-22 см и содержит 25 витков. Для поиска более мелких предметов, можно намотать катушку по меньше 15 см — 17 витков или 10 см. — 13 витков. Для поиска чермета конечно лучше использовать катушку диаметром 19 см.
Хочу сказать пару слов о тональности звука. Мне он показался слишком грубым. Изменить тональность, можно путём подбора конденсатора С1, я заменил его на 47nf и звук стал более высоким.
Динамик лучше брать типа 3ГДШ TRYD 4070-02 8Ом так звук будет гораздо мощнее, я заменил старый динамик в своём металлоискателе именно на него. Так же, очень хорошо справляются и динамики от наушников.
Ссылку на печатную плату, а так же список деталей необходимых для сборки Пирата которые очень дёшево можно купить на AliExpress с бесплатной доставкой, находятся в конце статьи по видео!
И напоследок, видео работы металлоискателя Пират:
Печатные платы и программа Sprint-Layou 6
Скачать
ВНИМАНИЕ! Принимаем заказа на изготовление металлоискателей, таких как «Пират», «Клон Пи В», «Квазар», «Терминатор 3» и т.д. Все платы заводский, можно заказать готовый металлоискатель, плату или КИТ-набор, в продаже также есть катушки для металлоискателей и корпуса. Доставка по всей России! Чтобы узнать подробность, пишите мне в ВК vk.com/kavinski или на WhatsApp +79649191333
Немного почитав радиолюбительские форумы по изготовлению металлоискателей, обнаружил, что большинство людей собирающих металлоискатели, на мой взгляд, незаслуженно списывают со счетов металлоискатели на биениях — так называемые BFO металлоискатели. Якобы это технология прошлого века и «детские игрушки». — Да, это простой и непрофессиональный прибор, требующий определенных навыков и опыта в обращении. Он не имеет четкой селективности металлов и требует подстройки в процессе эксплуатации. Однако и с ним можно производить удачный поиск при определенных обстоятельствах. Как вариант — пляжный поиск — идеальный вариант для металлоискателя на биениях.
С металлоискателем нужно ходить там, где люди что-то теряют. Мне повезло, у меня есть такое место. Неподалеку от моего дома расположен заброшенный речной песчаный карьер, на котором летом постоянно отдыхают люди бухая и купаясь в реке. Понятное дело, они постоянно что то теряют. На мой взгляд, лучшего места для поиска с металлоискателем BFO придумать нельзя. Потерянные вещи моментально самозакапываются на небольшую глубину в сухой песок и отыскать их вручную уже практически невозможно. Мистика какая то. Помню, в детстве уронил там в песок ключи от квартиры. Вот стою я, вот сюда упали ключи, но, сколько я не перекапывал тот участок — все безрезультатно. Они буквально провалились «сквозь землю». Просто заколдованное место. В то же время на этом «золотом» пляже я постоянно находил в песке чужие ключи, зажигалки, монеты, украшения и телефоны. А при последнем походе с металлоискателем – женское тонкое золотое кольцо. Оно было почти у поверхности чуть присыпано песком. Возможно, просто везение. Собственно именно под этот пляж я и делал свой металлоискатель.
Почему именно BFO? — Во первых, это самый простой вариант металлоискателя. Во вторых он обладает хоть какой то динамикой сигнала в зависимости от свойств предмета. Не то что импульсный металлоискатель – «пикающий» на все одинаково. Я не в коем случае не хочу принизить достоинства импульсного металлоискателя. Это тоже замечательный прибор, но для пляжа заваленного пробками и фольгой он не подходит. Многие скажут, что и металлоискатель на биениях не различает свойств предмета, воет и гудит на все одинаково. Однако это не так. Попрактиковавшись на пляже пару дней, я научился весьма неплохо определять фольгу как резкое и глубокое изменение частоты. Крышки же от пивных бутылок вызывают строго определенное изменение частоты, которое нужно запомнить. А вот монеты издают слабый, «точечный» сигнал — еле уловимое изменение частоты. Все это приходит с опытом при наличии терпения и неплохого слуха. Металлоискатель на биениях — это все-таки «слуховой» металлоискатель. Анализатором и обработчиком сигналов здесь является человек. По этому вести поиск нужно обязательно на наушники, а не на динамик. Причем лучший вариант – большие наушники, а не «затычки».
Конструктивно я решил делать металлоискатель складным и компактным. Чтобы он влезал в обычный пакет, дабы не привлекать внимание «нормальных» людей. Иначе, добираясь до места поиска, выглядешь как «инопланетянен», или собиратель металлолома. Для этой цели я купил в магазине самое маленькое (двухметровое пятиколенное) телескопическое удилище. Оставил три колена. Получилась довольно компактное складное основание, на котором я и собрал свой металлоискатель.
Весь электронный блок был собран в уже полюбившимся мною пластиковом коробе для проводки 60х40. Из его пластмассы так же была сделана торцевая заглушка, перегородка отсека питания и крышка отсека питания .Части склеивались суперклеем и садились на болты М3. Крепление электронного блока металлоискателя к удилищу выполнено в виде металлической скобы, которая вставляется на место рыболовной катушки с леской и фиксируется штатной гайкой удилища. Получилась отличная легкая и прочная конструкция. Наружу блока выведена кнопка питания, гнездо подключения катушки (пятиконтактное гнездо от «дедушкиного» магнитофона), регулятор частоты и гнездо под джек для наушников.
Печатная плата металлоискателя изготавливалась по месту разводкой дорожек водостойким маркером. По этому, к сожалению, печатку предоставить не могу. Монтаж поверхностный навесной — без отверстий – «ленивый» — мой любимый . Так же важно после сборки платы покрыть её любым лаком для защиты от влаги и мусора. При полевых условиях это очень важно. Я, к примеру, потерял один день из за того, что во внутрь под микросхему попал какой-то мусор. Металлоискатель просто перестал работать. И мне пришлось возвращаться домой, разбирать его, продувать и вскрывать плату лаком.
Сама же схема (см. ниже ) была переработана и оптимизирована мной из двух схем металлоискателей. Это «Металлоискатель на микросхеме» — журнал «Радио», 1987г, №01, стр 4, 49 и «Металлоискатель повышенной чувствительности» — журнал «Радио», 1994г, №10, стр 26.
В результате получилась простая и функциональная схема, обеспечивающая стабильные низкочастотные результирующие биения – то, что нужно для определения на слух малейших изменений частоты.
Генераторы эталонный и измерительный разнесены — выполнены в отдельных корпусах микросхем – DD1 и DD2. На первый взгляд это расточительство – используется всего один логический элемент корпуса микросхемы из четырех. То есть, да, эталонный генератор собран только на одном логическом элементе микросхемы. Остальные три логические элемента микросхемы не задействованы вовсе. Точно так же построен и измерительный генератор. Казалось бы — бессмысленно не задействовать свободные логические элементы корпуса микросхем. Однако именно в этом и есть большой смысл. И состоит он в том, что если, допустим, все же собрать в одном корпусе микросхемы два генератора – они будут синхронизировать друг друга на близких частотах. Не удастся получать малейшие изменения результирующей частоты. На практике это будет выглядеть как резкое изменение частоты лишь при близком воздействии массивного металлического предмета на измерительную катушку. Иными словами резко снижается чувствительность. Металлоискатель не реагирует на мелкие предметы. Результирующая частота как бы «залипает» на нуле – до определенного момента вовсе нет биений. Еще говорят – «тупой металлоискатель», «тупая чувствительность». Кстати «Металлоискатель на микросхеме» — журнал «Радио», 1987г, №01, стр 4, 49 построен как раз на одной микросхеме вовсе. Там очень заметен этот эффект синхронизации частот. Ним совершенно невозможно искать монеты и мелкие предметы.
Так же оба генератора должны быть экранированы отдельными небольшими экранами из жести. Это на порядок повышает стабильность и чувствительность металлоискателя в целом. Достаточно, просто припаять на минус между микросхемами генераторов небольшие перегородки из жести, чтобы убедится в улучшении параметров металлоискателя. Чем лучше экран — тем лучше чувствительность (ослабляется влияние генераторов друг на друга и плюс защита от внешнего воздействия на частоту).
Электронная настройка.
Во всех классических схемах BFO (схемах BFO прошлого века) для настройки нулевых биений используется конденсатор переменной емкости КПЕ. Этот паршивый элемент изначально перечеркивает все возможности металлоискателя на биениях. Никогда не используйте КПЕ в BFO! Даже если он не будет иметь люфтов, все равно он будет источником паразитного изменения частоты в следствии температурных и емкостных влияний окружающей среды. Производить поиск в реальных походных условиях с конденсаторным металлоискателем на биениях сплошное мучение.
Только электронная настройка! Она реализована на стабилитроне D1, включенном в схему как варикап. Такая схема обеспечивает хорошую перестройку частоты при отсутствии паразитных явлений. Вместо КС147 можно использовать к примеру КС133, КС156 и многие другие. Так же многие диоды обладают свойством варикапа. Естественно, возможно придется подобрать резисторы R1, R3. Возможно R3 нужно будет вообще закоротить при другом стабилитроне или диоде.
Компаратор на DD3.2 – DD3.4.
Этот элемент схемы преобразует синусоидальный сигнал с выхода смесителя DD3.1 в прямоугольные импульсы удвоенной частоты.
Во первых, прямоугольные импульсы отчетливо слышны на герцовых частотах как четкие щелчки. В то время как синусоидальный сигнал герцовых частот уже с трудом различим на слух.
Во вторых, удвоение частоты позволяет более близко подойти регулировкой к нулевым биениям. В результате, регулировкой можно добиться «цоканья» в наушниках, изменение частоты которого уже можно уловить при поднесении маленькой монеты к катушке на расстоянии 30 см.
Стабилизатор питания генераторов.
Естественно, в данной схеме напряжение питания заметно влияет на частоту генераторов DD1.1 и DD2.1 металлоискателя. Причем на каждый из генераторов влияет по разному. В результате чего, с разрядом батареи немного «плывет» и частота биений металлоискателя. Для предотвращения этого в схему был введен пятивольтовый стабилизатор DA1 для питания генераторов DD1.1 и DD2.1. В результате чего частота перестала «плыть». Однако, следует сказать, что с другой стороны, из за пятивольтового питания генераторов несколько снизилась чувствительность металлоискателя в целом. По этому, эту опцию следует считать необязательной и при желании можно питать генераторы DD1.1 и DD2.1 от кроны без стабилизатора DA1. Только придется чаще подстраивать частоту вручную, регулятором.
Так как это не импульсный металлоискатель, а BFO, то поисковая катушка (L2) не боится металлических предметов в своей конструкции. Нам не понадобятся пластмассовый болт. То есть мы можем без опаски применять для её изготовления металлический (но только незамкнутый!) каркас и обычный металлический болт для шарнира. В последствии, при наладке схемы, все влияния металла в конструкции выведутся в ноль подстроечным сердечником катушки L1. Сама катушка L2 содержит 32 витка провода ПЭВ или ПЭЛ диаметром 0,2 – 0,3 мм. Диаметр катушки должен быть около 200 мм. Намотку удобно производить на небольшое пластмассовое коническое ведро. Полученные витки полностью обматываются изолентой и увязываются ниткой. Далее вся эта конструкция обматывается фольгой (кулинарная фольга для запекания). Сверху фольги наматывается луженая проволока несколькими витками по всему периметру катушки. Эта проволока будет выводом фольгяного экрана катушки. Еще раз все вместе обматывается изолентой. Сама катушка готова.
Каркас на котором будет располагаться катушка и которым она будет крепится к удилищу изготавливается из стальной пружинящей (не мягкой) проволоки 3-4 мм. Он состоит собственно из трех частей (смотри рисунок)– двух витых проволочных петель шарнира, которые будут соединены болтом между собой и проволочного кольца, продетого в трубку от капельницы (кольцо не должно быть замкнутым витком).
Вся эта конструкция вместе с готовой проволочной катушкой так же увязывается вместе нитками и изолентой.
Сам шарнир с катушкой крепится к удилищу увязыванием капроновыми нитками и проклейкой эбоксидной смолой.
Катушку желательно не мочить в процессе поиска и тем более не использовать для подводного поиска. Она не герметична. Попавшая во внутрь влага со временем может разрушить её.
Катушка L1 (смотри схему) мотается на каркасе от малогабаритного радиоприемника с металлическим экраном и подстроечным сердечником. Катушка содержит 65 витков провода ПЭВ диаметром 0.06мм
Поиск артефактов под землей — довольно популярное занятие. Для кого-то, это профессия, кто-то просто увлекается археологией. Существуют многочисленные группы кладоискателей: как романтиков, так и прагматичных добывателей ценностей. Всех этих людей объединяет одна страсть: поиск металлических предметов, спрятанных на различной глубине.
Если у вас есть точная карта с указанием места захоронения клада, либо планы проведения боев во время войны, это не гарантирует успех. Можно перелопатить тонны грунта, а искомый предмет будет спокойно лежать в паре метров от места активного поиска.
Для поиска золота, и менее ценных металлов, вам потребуется металлоискатель, который можно сделать своими руками.
Важная информация: Применение подобных приборов не запрещено Законом. Однако существуют наказания за последствия такого поиска, касающиеся раскопок, а также извлечения обнаруженных предметов.
Не будем вдаваться в тонкости, это тема другой статьи. Проще говоря: если вы нашли золотое кольцо на пляже, либо горсть советских монет в лесу — проблем, связанных с применением электронных средств поиска не будет.
А вот за извлеченные бронзовые ложки возрастом от 100 лет и старше, можно получить реальный срок или крупный штраф.
Тем не менее приборы для поиска металлических предметов в толще земли свободно продаются, а желающие сэкономить могут сделать металлоискатель своими руками в домашних условиях.
В отличие от детекторов грунта, работающих с использованием волн различной частоты или ультразвука, металлоискатель (фабричный, или созданный своими руками), работает с индуктивностью.
Катушка излучает электромагнитное поле, которое затем анализируется приемником. Если в зоне действия оказывается любой предмет, который проводит электроток, либо имеет ферромагнитные свойства — формат поля искажается. Точнее сказать, под действием активного поля катушки, объект формирует собственное. Это событие фиксируется приемником, и генерируется оповещение: перемещается стрелка прибора, звучит тональный сигнал, загораются световые индикаторы.
Зная методику работы, можно рассчитать электрическую схему, и создать мощный металлоискатель своими руками. Сложность конструкции зависит только от наличия элементной базы и вашего желания. Рассмотрим несколько популярных вариантов, как собрать самодельный металлоискатель:
Такое прозвище получено из-за характерной формы площадки, на которой расположены катушки индуктивности.
Расположение элементов связано с принципом работы. Схема выполнена в виде двух генераторов, работающих на одной частоте. При подключении к ним одинаковых катушек, создается индукционный баланс. Стоит попасть в электромагнитное поле постороннему предмету, обладающему электропроводимостью, как баланс поля разрушается.
Генераторы реализуются на микросхемах NE555. На иллюстрации изображена типовая схема такого прибора.
Катушка для металлоискателя (их две, на схеме: L1 и L2) делается своими руками из провода сечением 0.5–0.7 мм². Идеальный вариант — трансформаторная обмоточная медная жила в лаковой изоляции (извлекается из любого ненужного трансформатора). Характеристики не обязательно выдерживать с ювелирной точностью, при одном условии: катушки должны быть одинаковыми.
Примерные параметры: диаметр 190 мм, в каждой катушке ровно 30 витков. Собранное изделие должно быть монолитным. Для этого витки прихватываются монтажной нитью, и заливаются трансформаторным лаком. Если этого не сделать, вибрация витков будет сбивать схему с настроенного баланса.
Есть два варианта изготовления:
Любая пайка «на соплях» может подвести в полевых условиях, и вам будет обидно за потраченное впустую время.
Так же, как и металлоискатель на транзисторах, прибор на NE555 нуждается в точной настройке перед использованием. На схеме видно три переменных резистора:
Информация: Подобная схема не может дискриминировать металлы. Искатель лишь дает понять, что объект существует. А по тональности сигнала (исходя из вашего опыта) можно определить приблизительный объем и глубину залегания.
Питание достаточно универсальное: 9–12 вольт. Можно подобрать АКБ от источника бесперебойного питания, или собрать блок питания из аккумуляторов формата ААА. Неплохой вариант — батареи 18650 (их еще используют для вейпа).
Принцип работы описан выше, поэтому просто разберем технологию. Выставляем все резисторы в среднее положение, и обеспечиваем срыв синхронизации генераторов. Для этого складываем катушки «восьмеркой», и перемещаем их друг относительно друга, пока писк не перерастет в потрескивание. Это и есть срыв синхронизации.
Фиксируем кольца, и вращаем резистор R1 до появления устойчивого потрескивания с ровными интервалами.
Поднося к месту перехлеста катушек (это и есть очка поиска) металлические предметы, добейтесь устойчивого писка. Чувствительность регулируем резистором R2.
Остается подстройка резистором R3, который используется скорее для корректировки падения напряжения в источнике питания.
Штанга для металлоискателя своими руками делается из легкой пластиковой трубы, либо из дерева. Использование алюминия нежелательно, поскольку он будет мешать работе. Схему и органы управления можно спрятать в герметичный корпус (например, распаечная коробка для проводки).
Искатель «бабочка» готов к работе.
Еще одна популярная импульсная модель для начинающих кладоискателей — металлоискатель «Пират» Его также легко сделать своими руками, подробная инструкция в двух вариантах:
Питание желательно приблизить к 12 вольтам, поскольку качество работы зависит от напряжения. Печатные платы уже опробованы, оба варианта на иллюстрации.
Катушка (в данном случае одна) изготавливается из той же трансформаторной проволоки 0.5 мм. Оптимальный диаметр 20 мм, количество витков 25. Поскольку мы делаем металлоискатель «Пират» своими руками, внешний дизайн отходит на второй план. Подойдут любы материалы, которые вы готовы были выбросить.
Рукоятку лучше выполнить разъемной, для удобства транспортировки. Помним, что использование металлов недопустимо.
Чувствительность регулируется двумя переменными резисторами в реальном времени, при проведении поиска. Никакая точная подстройка генератора не требуется.
А если вам удастся качественно загерметизировать корпус, можно заняться поиском «сокровищ» в пляжной полосе прибоя, и даже на дне водоема.
Подводный металлоискатель своими руками сделать сложнее, но он даст неоспоримое преимущество перед конкурентами.
Глубинный металлоискатель своими руками без дополнительных затрат можно сделать из готового «Пирата». Для этого можно пойти двумя способами:
Металлоискатель «Пират» можно собрать на популярном контроллере «Ардуино».
Пользоваться таким прибором удобнее, но дискриминации металлов по-прежнему не будет.
Разобравшись, как сделать металлоискатель своими руками для любительских задач, кратко разберем несколько серьезных моделей.
По сути, это удешевленный вариант профессионального искателя Clone PI-AVR, только вместо ЖК дисплея применяется линейка светодиодов. Это не так удобно, но по-прежнему позволяет контролировать глубину залегания артефактов.
Оптимальный по цене вариант — на микросхеме CD4066 и микроконтроллере ATmega8.
Разумеется, под это решение есть и макет печатной платы, только кнопки управления выносятся на отдельную панель.
Программирование ATmega8 — это тема отдельной статьи, если вы работали с такими контроллерами, никаких сложностей не возникнет.
Мощный металлоискатель Clone PI W, сделанный своими руками, позволяет находить металл не глубине более метра, правда без дискриминации.
Похожая схема на контроллере ATmega8 называется «Шанс». Принцип работы аналогичный, только появилась возможность отсеивания (частичной дискриминации) черных металлов.
Также проработан рисунок печатной платы, который можно с успехом заменить классической «макеткой» для Ардуино
Если вам нужен самодельный металлоискатель с дискриминацией металлов, обратите внимание на эту модель. Схема достаточно сложная, но ваши труды окупаются найденными монетами, которые могут оказаться золотыми.
Особенность «Терминатора» состоит в разнесении приемной и передающей катушек. Для испускания сигнала изготавливается кольцо 200 мм. Для него укладывается 30 витков провода, затем он разрезается, в итоге мы получаем 2 полу-катушки общей емкостью 60 витков (смотреть схему).
Приемная катушка располагается внутри, 48 витков диаметром 100 мм.
Настройка производится с помощью осциллографа, после достижения оптимальных результатов по амплитуде, обмотки фиксируются в корпусе с помощью заливки эпоксидной смолой.
Затем производится опытная практическая настройка переключателя дискриминации. Для этого используются реальные объекты из различных металлов, а на переключателе режимов наносится их тип (после проверки).
Радиолюбителями прорабатывается усовершенствованный вариант «Терминатор 4», но практического экземпляра еще нет.
Вне зависимости от сложности схемы, изготовление самодельного металлоискателя потребует от вас достаточно времени и сил. Поэтому из любопытства, такие приборы не делают. А вот для профессионального использования — это отличная альтернатива фабричным экземплярам.
Когда-то, построив своими руками несколько металлоискателей различной степени работоспособности, я захотел изучить как работает схема Ардуино в этом направлении.
Есть несколько хороших примеров того, как собрать металлоискатель своими руками. Однако, для них обычно необходимо либо довольно много внешних компонентов для обработки аналогового сигнала, либо чувствительность на выходе довольно слабая.
Когда мы думаем об импульсных металлодетекторах, основной темой является то, как фиксировать небольшие изменения напряжения в сигналах, связанных с поисковой катушкой. Эти изменения обычно очень малы. Наиболее очевидный подход заключается в использовании аналоговых входов «ATmega328». Но, глядя на спецификации, есть две основные проблемы: они в основном медленные, а разрешение (в большинстве случаев) низкое.
С другой стороны, металлоискатель на микроконтроллере работает на частоте 16 МГц и имеет довольно неплохие возможности синхронизации, а именно разрешение 0,0625 мкс при использовании тактовой частоты. Таким образом, вместо того, чтобы использовать аналоговый вход для считывания, самым простым способом восприятия небольших динамических изменений напряжения является сравнение изменения падения напряжения с течением времени при фиксированном опорном напряжении.
Для этой цели ATmega328 имеет подходящие особенности внутреннего компаратора между D6 и D7. Этот компаратор способен инициировать прерывание, что позволяет точно обрабатывать события. Используя его вместе с аккуратно закодированными процедурами синхронизации, такими как millis () и micos (), а также используя внутренний таймер ATmega328 с гораздо более высоким разрешением, Arduino — отличная основа для подобного рода металлоискателя.
Таким образом, говоря об исходном коде — хорошим началом было бы программирование внутреннего компаратора для «изменения» полярности входов и использование внутреннего счетчика с максимальной скоростью, возможной для изменения периодичности изменений.
Итоговый вариант кода для Arduino:
Конечно, эта идея не совсем новая. Основная часть этого кода может быть другой. Попробуйте поискать в других источниках, например TPIMD.
Идея состоит в том, чтобы использовать Arduino как детектор импульсной индукции, как и в TPIMD, поскольку задумка с кривой затухания, похоже, работает очень хорошо. Проблема с импульсными индукционными детекторами заключается в том, что они обычно нуждаются в разном напряжении для работы. Одно напряжение для питания катушки и отдельное напряжение для обработки кривой затухания. Эти два источника напряжения всегда усложняют процесс постройки импульсных индукционных детекторов.
Рассматривая напряжение катушки в детекторе PI, полученную кривую можно разделить на две разные стадии. Первый этап — это сам импульс, питающий катушку и создающий магнитное поле (1). Второй этап — это кривая спада напряжения, начиная с пика напряжения, а затем быстро изменяясь на «безмощностное» напряжение катушки(2).
Проблема в том, что катушка меняет свою полярность после импульса. Если импульс положительный (Var 1. на прилагаемом рисунке) кривая распада отрицательна. Если импульс отрицательный, кривая затухания будет положительной (Var 2. на прилагаемом рисунке).
Чтобы решить эту основную проблему, катушку нужно «перевернуть» электронным путем после импульса. В этом случае импульс может быть положительным, и кривая затухания также останется положительной.
Для этого катушка должна быть изолирована от Vcc и GND после импульса. В этот момент существует только ток, протекающий через демпфирующий резистор. Эта изолированная система катушки и демпфирующего резистора может быть «ориентирована» на любое опорное напряжение. Это теоретически создаст комбинированную положительную кривую (см. нижнюю часть чертежа).
Эта положительная кривая может быть использована с помощью компаратора для определения момента времени, когда напряжение затухания «пересекает» опорное напряжение. В случае, если сокровища вблизи катушки, изменяется кривая затухания и точка пересечения времени изменения опорного напряжения. Это изменение может быть обнаружено.
После некоторых экспериментов я остановился на следующей схеме:
Схема состоит из модуля Arduino Nano. Этот модуль управляет двумя МОП-транзисторами, питающими катушку (на SV3) через D10. Когда импульс на конце D10 заканчивается, оба МОП-транзистора изолируют катушку от 12V и GND.
Сохраненная энергия в катушке выходит через резистор R2 (220 Ом). В то же время резистор R1 (560 Ом) соединяет первую положительную сторону катушки с GND. Это изменяет отрицательную кривую затухания на резисторе R5 (330 Ом) до положительной кривой. Диоды защищают входной вывод Arduino.
R7 является делителем напряжения около 0,04 В. В настоящее время кривая затухания на D7 становится более отрицательной, чем 0,04 на D6, прерывание срабатывает, а длительность после окончания импульса сохраняется.
В случае металла вблизи катушки кривая затухания длится дольше, а время между окончанием импульса и прерыванием увеличивается.
Процесс построения детектора довольно прост. Это можно сделать либо на макете (придерживаясь оригинальной схемы), либо используя пайку деталей на печатной плате.
Светодиод D13 на плате Arduino Nano используется в качестве индикатора для металла.
Использование макета — самый быстрый способ сделать работающий детектор. Нужно провести некоторую проводку, но это может быть сделано на отдельном маленьком макете. На снимках это показано в 3 этапа, так как Arduino и МОП-транзисторы скрывают некоторые из проводов. При тестировании я случайно отключил диоды, не заметив сразу. Это особо не повлияло на поведение детектора. В версии на печатной плате я их оставил.
На рисунках не показаны подключения к OLED-дисплею 0,96. Этот дисплей подключен таким образом:
Vcc — 5В (на выводе Arduino, а не на блоке питания!)
GND — GND
SCL — A5
SDA — A4
Этот OLED-дисплей необходим для первоначальной калибровки детектора. Это делается путем установки правильного напряжения на PIN6 Arduino. Это напряжение должно быть около 0,04 В. Дисплей помогает установить правильное напряжение.
Макетная версия работает очень хорошо, хотя, вероятно, не подходит использования в полевых условиях.
Что касается пайки, мне не очень нравится двухсторонняя высокотехнологичная печатная плата, поэтому я изменил схему для односторонней.
Сделаны следующие изменения:
Таким образом можно создать одностороннюю печатную плату, которая может быть спаяна на универсальной печатной плате. Используя эту схему, вы получите рабочий PI-детектор с 8-10 внешними компонентами (в зависимости от того, используется ли OLED-дисплей и / или динамик).
Если детектор правильно построен и программа записана в Arduino, самым простым (если не единственным) способом настройки устройства является использование OLED-дисплея. Дисплей подключен к 5V, GND, A4, A5. Дисплей должен показывать «калибровку» после включения питания устройства. Через несколько секунд он должен сказать «калибровка окончена», и на дисплее должны отобразиться три цифры.
Первое число — это «контрольное значение», указанное во время калибровки. Второе значение — это последнее измеренное значение, а третье значение — среднее значение последних 32 измерений.
Эти три значения должны быть более или менее одинаковыми (в моих тестах до 1000). Среднее значение должно быть более или менее стабильным.
Чтобы начать первоначальную настройку, рядом с катушкой не должно быть металла.
Теперь делитель напряжения (подстроечный резистор) должен быть выставлен таким образом, чтобы нижние два значения были установлены на максимум, сохраняя при этом стабильное показание. Существует критическая настройка, когда среднее значение начинает давать странные показания. Поверните триммер, чтобы снова получить стабильные значения.
Может случиться, что дисплей зависает. Просто нажмите кнопку сброса и начните заново.
Для моей конфигурации (катушка: 18 оборотов20 см) стабильное значение составляет около 630-650. После установки нажмите кнопку сброса, аппарат снова откалибрует и все три значения будут в одном диапазоне. Если металл теперь поднести к катушке, светодиод на плате Arduino (D13) должен загореться. Прилагаемый динамик издает несколько щелчков (в исходном коде есть пространство для улучшений).
Во избежание высоких ожиданий:
Детектор обнаруживает некоторые вещи, но он остается очень простым и ограниченным.
Чтобы дать представление о возможностях, я сравнил некоторые другие детекторы со своими. Результаты по-прежнему весьма впечатляют для детектора с 8 внешними элементами, но не дотягивают до профессионального оборудования.
Глядя на схему и программу, я вижу много возможностей для улучшения. Значения резисторов были подобраны исходя из опыта, время импульса 250 мс было выбрано случайным образом, параметры катушки тоже.
Во время тестирования я понял, что библиотека для OLED-дисплея I2C потребляла слишком много ресурсов, поэтому я решил использовать 16×2-дисплей с конвертером I2C.
Я адаптировал программу для ЖК-дисплея, добавив некоторые полезные функции. В первой строке дисплея теперь отображается уровень сигнала возможной индикации. Вторая строка теперь показывает два значения. Первое указывает на отклонение текущего сигнала по сравнению с калибровочным значением. Это значение должно быть «0». Если это значение постоянно отрицательное или положительное, детектор должен быть откалиброван нажатием кнопки сброса. Положительные значения указывают на металл вблизи катушки.
Второе значение показывает фактическое значение задержки кривой затухания. Это значение обычно не так интересно, но оно необходимо для первоначальной настройки детектора.
Теперь программа позволяет отслеживать множественные длительности импульсов в последовательности (средство для экспериментов / улучшения производительности). Тем не менее, я не добился какого-нибудь прорыва, поэтому значение по умолчанию установлено на одну длительность импульса.
При настройке детектора важно второе значение второй строки (первое можно игнорировать). Первоначально значение может быть «неустойчивым» (см. Рисунок). Поверните подстроечный резистор, пока значение не достигнет стабильного показания. Затем поверните его, чтобы увеличить значение до максимального стабильного значения. Нажмите кнопку сброса для повторной калибровки, и детектор готов к использованию.
У меня сложилось впечатление, что, установив максимальную стабильную величину, я потерял чувствительность к цветным металлам. Поэтому, возможно, стоит поэкспериментировать с настройками, чтобы это исправить.
Я сделал 3 катушки для дальнейшего тестирования схемы импульсного металлоискателя:
Интересно, что все катушки работали довольно хорошо, с почти одинаковой производительностью (рублевая монета на 40-50 мм в воздухе). Это может быть весьма субъективное наблюдение.
Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
Металлоискатель «PIRAT» (сокращённо от PI — импульсный, RA-T — radioskot — сайт разработчиков) прост в изготовлении и настройке, не содержит программируемых элементов которых так боятся многие радиолюбители, в нем нет дорогих и дефицитных элементов, а по своим параметрам не уступает некоторым зарубежным экземплярам ценой 100-300 у.е. Основные преимущества данного устройства перед другими схемами простых металоискателей — это стабильность и дальнобойность. Собрать этот МД, под силу даже людям имеющим элементарные знания в области электроники. Решились? Тогда поехали.
Параметры металлоискателя:
Прибор состоит из двух основных узлов, передающего и приемного. Передающий узел состоит из генератора импульсов на микросхеме КР1006ВИ1 (зарубежный аналог NE555) и мощного ключа на транзисторе IRF740. Приемный узел собран на микросхеме К157УД2 и транзисторе ВС547.
Принципиальная схема металлоискателя ПИРАТ
Работа с прибором. При включении ожидаем 15-20 сек, после чего регулятором ЧУВСТВИТЕЛЬНОСТЬ находим такое положение при котором в динамике прослушиваются щелчки — это и будет максимальная чувствительность. Прибор прост в управлении и навыки работы с ним приходят буквально через пару включений.
У кого возникнет проблема с приобретением микросхемы КР1006ВИ1, можно собрать генератор на транзисторах. Но здесь уже из-за разброса их параметров возможно придется подобрать частоту и длительность импульса. Для этого желательно иметь осциллограф. Осциллограммы в различных точках схемы показаны на картинках в архиве.
Схема металлоискателя PIRAT с генератором на транзисторах:
Для любителей что-то померять, вот напряжения на выводах ОУ (без присутствия метала в зоне датчика):
2-6.5в
3-6.5в
5-5.5в
6-3.5в
9-0.7в
13-6.2в
Обсуждение МД на форуме
Форум по обсуждению материала МЕТАЛЛОИСКАТЕЛЬ PIRAT
Принципиальная схема и работа металлоискателя Металлоискатель— очень распространенное устройство, которое используется для проверки людей, багажа или сумок в торговых центрах, отелях, кинозалах и т. Д., Чтобы убедиться, что человек не имеет при себе металлов или незаконных вещей, таких как пистолеты, бомбы и т. д. Металлоискатели обнаруживают присутствие металлов.
Существуют различные типы металлоискателей, такие как ручные металлоискатели, проходные металлоискатели и металлоискатели с наземным поиском. Металлоискатели могут быть легко созданы, а схема базового металлоискателя не такая сложная.
В этом проекте мы разработали простую схему металлоискателя типа DIY, используя очень простые компоненты, которые можно использовать в наших домах и садах.
Принципиальная схемаНа следующем изображении показана принципиальная схема цепи металлоискателя.
TDA0161 ИС датчика приближения: TDA0161 — ИС датчика приближения, производимая STMicroelectronics.Его можно использовать для обнаружения металлических предметов, обнаруживая небольшие изменения в высокочастотных вихретоковых потерях.
Микросхема TDA0161 действует как генератор с помощью схемы с внешней настройкой. Изменения в токе питания будут определять выходной сигнал, т. Е. Ток высокий, когда рядом находится металлический объект, и низкий, когда металлического объекта нет.
TDA0161 имеет 8 контактов и поставляется в двухрядном корпусе (DIP). На следующем изображении показана схема выводов микросхемы TDA0161.
ПРИМЕЧАНИЕ: Согласно STMicroelectronics, микросхема датчика приближения TDA0161 устарела.Если он доступен на рынке, смело создавайте этот увлекательный проект. Если она недоступна, попробуйте найти новую микросхему. Мы постараемся обновить, если будет доступна подобная микросхема. Если вы найдете какие-либо микросхемы датчика приближения, укажите это в разделе комментариев.
Катушка(индуктор): для этого проекта мы использовали медный провод 30 AWG. Затем он наматывается на катушку с использованием эталона диаметром 5,8 см. Катушка состоит из 140 — 150 витков.
Цепь металлоискателя состоит из трех основных частей: LC-цепи, датчика приближения, выходного светодиода и зуммера. Катушка и конденсатор С1, включенные параллельно, образуют LC-цепь.
Датчик приближения (TDA0161) срабатывает этой LC-цепью при обнаружении любого металла.Затем датчик приближения включит светодиод и подаст сигнал тревоги с помощью зуммера.
Цепь LC: Цепь LC имеет индуктивность и конденсатор, соединенные параллельно. Эта цепь начинает резонировать, когда рядом с ней находится материал той же частоты. Цепь LC заряжает конденсатор и катушку индуктивности поочередно. Когда конденсатор полностью заряжен, заряд передается на катушку индуктивности.
Индуктор начинает заряжаться, и когда заряд конденсатора равен нулю, он берет заряд с индуктора в обратной полярности.Затем заряд индуктора уменьшается, и снова процесс повторяется. Обратите внимание, что индуктор является устройством хранения магнитного поля, а конденсатор — устройством хранения электрического поля.
Датчик приближения: Датчик приближения может обнаруживать объекты без каких-либо физических помех. Датчик приближения будет работать так же, как инфракрасный датчик, приближение также выдает сигнал, он не будет выдавать выходной сигнал до тех пор, пока не будет изменений в отраженном обратном сигнале.
Если есть изменение в сигнале, он обнаружит и выдаст соответствующий выходной сигнал.Существуют различные датчики приближения, например, для обнаружения пластикового материала, мы можем использовать приближение емкостного типа, а для металлов мы должны использовать индуктивный тип.
Цепь LC, состоящая из L1 (катушка) и C1, является основной частью цепи детектора металла. С помощью этой LC-цепи, которая также называется Tank Circuit или Tuned Circuit, микросхема TDA0161 действует как генератор и генерирует колебания с определенной частотой.
Когда LC-цепь обнаруживает любую резонирующую частоту от любого металла, который находится рядом с ней, создается электрическое поле, которое приводит к индукции тока в катушке и изменению потока сигнала через катушку.
Переменный резистор используется для изменения значения датчика приближения, равного LC цепи, лучше проверять значение, когда катушка не находится рядом с каким-либо металлическим предметом. Когда металл обнаружен, в цепи LC изменится сигнал.
Измененный сигнал подается на датчик приближения (TDA 0161), который обнаруживает изменение сигнала и соответствующим образом реагирует. Выходной сигнал датчика приближения будет меньше 1 мА, когда металл не обнаружен, и около 10 мА (обычно больше 8 мА), когда катушка находится рядом с металлом.
Когда на выходном контакте высокий уровень, резистор R3 подает положительное напряжение на транзистор Q1. Q1 загорится и загорится светодиод (на схеме не показан) и включится зуммер.
Похожие сообщения:
Базовая добыча россыпи Вы когда-нибудь мечтали найти свои собственные золотые самородки? Проверять здесь, чтобы узнать об основах добычи россыпей — и о том, как вы можете найти свой собственная россыпь золота. Будь то промывка, промывка, обнаружение металлов, дноуглубительные работы или сухая мойка — вот целая серия страниц, которые составляют базовое руководство о том, как работает золотодобыча, и как вы можете принять участие. | Места на проспекте золота | ||||
All About Placer Mining Самородки россыпи — цель многих старателей. Этот раздел содержит массу информации, в том числе информацию об исторических методы добычи россыпи, крупные самородки, как образуются самородки, знаменитая россыпь районы и многое другое. | Горняки
Справочные страницы | ||||
Соберите собственное горное оборудование C Вам действительно не по карману дорогое оборудование для поиска золотых самородков? Являются Вы убежденный энтузиаст DIY, заинтересованный в создании собственного самодельного горнодобывающего оборудования? Проверьте здесь бесплатные планы и другая информация о конструкции по созданию собственного геологоразведочного оборудования и улучшению того, что у вас уже есть.Я сделал это, и Я дам вам прямую и честную информацию. | Криса
Поисковые приключения | ||||
Сборщики минералов Страница Хотите узнать больше о минералах? На этих страницах есть куча отличных фото и другой информации обо всем разном минералы, которые так важны в нашей жизни. Твердость, цвета, где они на этих веб-страницах можно найти и другие важные данные. | Уголок рокхаунда | ||||
Золотая лихорадка
История и азарт История золотой лихорадки — это история рост и заселение планеты.В поисках богатства гнали молодых и крепких мужчин через опасные и трудные условия. Только некоторые стали богатыми, но все узнали о пионерском духе. Читайте о волнение от этой истории и их переживаний, в основном их собственными словами. | Драгоценный камень Криса,
Серебряный
и золотые рудники | Рекомендуемая Металлоискатели Для поиска золота: | |||
Библиотека и книжный магазин Там всегда есть чему поучиться.Вот большой список книг, которые я рекомендую на сайте Prospecting для коллекционирование золота, горных пород и минералов, геология, изготовление ювелирных изделий и т. д. Каждый выбор есть ссылка, по которой вы можете купить эти книги прямо на Amazon, если вы желание. Привет, если вы ищете отличную книгу по поиску золота, Проверить: Кулаки, полные золота, Крис Ральф | Кварц и Hard Rock Mining | ||||
Поиск золота с помощью MXT MXT — интересный многоцелевой металлоискатель, подходящий для различных сред, включая как разведку, так и общая охота за монетами и охота за сокровищами. | Инвестирование в золото и
Добыча металлов | ||||
Основы поиска золота и серебра Ищущий пытается найти золото и серебро (или другие ценные материалы) и знания — это то, что вам нужно, чтобы помочь вам в ваш квест. На этих страницах представлена основная информация, необходимая для поиска ваше собственное золото и серебро. | Всемирно известные золотые месторождения | ||||
Страницы образцов руды и самородков Заинтересованы в том, чтобы увидеть что-нибудь хорошее фото, как выглядят разные виды руды? На страницах у меня есть изображения самородного золота и платины плюс множество различных руд для получения золота, серебро и медь, а также информация об этих рудах и их местонахождении. | отметка
Поисковые приключения Твена | ||||
Энциклопедия драгоценных камней На этих страницах даны ответы на часто задаваемые вопросы о драгоценных камнях. Есть страницы и фотографии для всех типов отдельных драгоценных камней с изображением самые популярные камни, а также некоторые менее известные особые камни. | Сделайте свои собственные украшения | ||||
Ознакомьтесь с моими последними поисковыми предложениями
статей при подписке на: | Отличная разведка приключенческие видео и демонстрации продукции по адресу: | ||||
Хотите узнать немного больше о сумасшествии старатель, стоящий за этим сайтом? Что ж, вот еще немного обо мне и о том, как я попал в разведку: Крис ‘ Разведывательная история |
% PDF-1.4 % 228 0 объект > эндобдж xref 228 109 0000000016 00000 н. 0000002532 00000 н. 0000002672 00000 н. 0000003649 00000 н. 0000003971 00000 н. 0000004055 00000 н. 0000004144 00000 п. 0000004256 00000 н. 0000004363 00000 п. 0000004419 00000 н. 0000004547 00000 н. 0000004603 00000 п. 0000004761 00000 н. 0000004817 00000 н. 0000004922 00000 н. 0000005064 00000 н. 0000005226 00000 н. 0000005282 00000 н. 0000005395 00000 н. 0000005506 00000 н. 0000005688 00000 н. 0000005743 00000 н. 0000005838 00000 н. 0000005931 00000 н. 0000006082 00000 н. 0000006137 00000 н. 0000006240 00000 н. 0000006344 00000 п. 0000006477 00000 н. 0000006532 00000 н. 0000006676 00000 н. 0000006731 00000 н. 0000006817 00000 н. 0000006902 00000 н. 0000007011 00000 н. 0000007066 00000 н. 0000007170 00000 н. 0000007225 00000 н. 0000007327 00000 н. 0000007382 00000 п. 0000007437 00000 п. 0000007492 00000 н. 0000007547 00000 н. 0000007602 00000 н. 0000007738 00000 п. 0000007793 00000 н. 0000007909 00000 н. 0000007964 00000 н. 0000008019 00000 н. 0000008074 00000 н. 0000008196 00000 н. 0000008251 00000 н. 0000008373 00000 п. 0000008428 00000 н. 0000008556 00000 п. 0000008611 00000 п. 0000008736 00000 н. 0000008791 00000 н. 0000008846 00000 н. 0000008902 00000 н. 0000009009 00000 н. 0000009065 00000 н. 0000009211 00000 п. 0000009267 00000 н. 0000009322 00000 н. 0000009378 00000 п. 0000009534 00000 п. 0000009590 00000 н. 0000009744 00000 н. 0000009800 00000 н. 0000009972 00000 н. 0000010028 00000 п. 0000010142 00000 п. 0000010198 00000 п. 0000010254 00000 п. 0000010308 00000 п. 0000011411 00000 п. 0000011699 00000 п. 0000011978 00000 п. 0000012267 00000 п. 0000013381 00000 п. 0000014489 00000 п. 0000015596 00000 п. 0000015898 00000 п. 0000015921 00000 п. 0000017141 00000 п. 0000017163 00000 п. 0000018237 00000 п. 0000018259 00000 п. 0000019336 00000 п. 0000019359 00000 п. 0000020455 00000 п. 0000020477 00000 п. 0000021530 00000 н. 0000021552 00000 п. 0000022596 00000 п. 0000022618 00000 п. 0000023694 00000 п. 0000023717 00000 п. 0000023775 00000 п. 0000023800 00000 п. 0000126531 00000 н. 0000126556 00000 н. 0000127750 00000 н. 0000127772 00000 н. 0000128816 00000 н. 0000128839 00000 н. 0000002728 00000 н. 0000003627 00000 н. трейлер ] >> startxref 0 %% EOF 229 0 объект > эндобдж 230 0 объект > эндобдж 335 0 объект > транслировать H̔KSaǿ٦_yR_ ݖ KR ڋ٭ & CjbFzQdaz — (, k {AL`Ri * t69
Криса Вудфорда.Последнее изменение: 4 декабря 2020 г.
Звуковой сигнал! Пи-п-бей! Есть ли что-нибудь более захватывающее, чем обнаруживая сокровище? Миллионы людей во всем мире весело провести время с помощью металлоискателей, чтобы найти захороненные ценные реликвии под землей. Точно такая же технология работает в наших вооруженных силах. и службы безопасности, помогающие сохранить мир в безопасности, раскрывая ружья, ножи и закопанные мины. Металлоискатели созданы на основе наука об электромагнетизме. Давайте узнаем, как они работают!
Фото: Этот морской пехотинец США использует металлоискатель Garrett для поиска спрятанного оружия.Фото Тайлера Хилла любезно предоставлено Корпусом морской пехоты США.
Фото: гениальный физик Джеймс Клерк Максвелл. Фотография из общественного достояния любезно предоставлена Wikimedia Commons.
Если вы когда-либо делали электромагнит, наматывая катушку с проволокой вокруг гвоздя и подключив его к батарее, вы узнаете, что магнетизм и электричество подобны пожилая супружеская пара: когда ты найдешь одну, ты всегда найдешь другую, не очень далеко.
Мы применяем эту идею на практике каждую минуту каждого дня. Каждый раз, когда мы пользуемся электроприбором, мы полагаемся на близкое связь между электричеством и магнетизмом. Электроэнергия, которую мы используем поступает от электростанций (или, все чаще из возобновляемых источников как ветряные турбины), и это сделано генератор, который действительно просто большой барабан с медной проволокой. Когда провод вращается с высокой скоростью через магнитное поле внутри него «волшебным образом» генерируется электричество — и мы можем использовать эту силу в своих целях.Электрические приборы мы используем (во всем, начиная от стирки машины к пылесосам) содержат электродвигатели, которые работают прямо противоположно генераторы: когда в них поступает электричество, оно вызывает изменение магнитное поле в катушке с проволокой, которая толкает поле постоянный магнит, и это то, что заставляет двигатель вращаться. (Ты можешь найти Подробнее об этом читайте в нашей статье об электродвигателях.)
Короче говоря, вы можете использовать электричество для создания магнетизма и магнетизма. сделать электричество.Фантастически умный шотландский физик по имени Джеймс Клерк Максвелл (1831–1879) резюмировал все это в 1860-х годах. когда он выписал четыре обманчиво простые математические формулы (ныне известные как уравнения Максвелла). Один из них говорит, что всякий раз, когда есть изменяя электрическое поле, вы также получаете изменяющееся магнитное поле. Другой говорит, что при изменении магнитного поля вы получаете изменяющееся электрическое поле. На самом деле Максвелл говорил о том, что электричество и магнетизм — две части одного и того же: электромагнетизм.Зная это, мы можем понять, как именно металл детекторы Работа.
Фото: Разработан усовершенствованный детектор прохода. в Тихоокеанской северо-западной национальной лаборатории использует волновую визуализацию для обнаружения пластикового и керамического оружия. не улавливается обычными металлоискателями. Фото любезно предоставлено Министерством энергетики США.
Artwork: Современный компактный металлоискатель изобрел Чарльз Гарретт в начале 1970-х годов.Вы можете ясно видеть две катушки (которые я покрасил в красный и синий цвета). Коробка (оранжевая) в верхней части ручки (зеленая) содержит схему управления, включая батарею (не показана), громкоговоритель (24), переключатель громкости (27), регулятор чувствительности (28) и переключатель включения / выключения ( 29). Эта иллюстрация взята из патента США 3,662,255 Чарльза Гарретта, выданного в 1972 году благодаря любезности Бюро по патентам и товарным знакам США.
Разные металлоискатели работают по-разному, но вот наука, лежащая в основе одного из более простых видов.Металлоискатель содержит катушка с проволокой (намотанная на круглую головку на конце ручку), известную как катушка передатчика. Когда течет электричество через катушка, вокруг нее создается магнитное поле. Когда вы подметаете детектор над землей, вы заставляете магнитное поле двигаться вокруг тоже. Если вы наведете детектор на металлический объект, движущийся магнитное поле влияет на атомы внутри металл. Фактически, это изменяет способ движения электронов (крошечные частицы, «вращающиеся» вокруг эти атомы) движутся.Теперь, если у нас есть изменяющееся магнитное поле в металл, призрак Джеймса Клерка Максвелла говорит нам, что мы также должны иметь электрический ток тоже движется туда. Другими словами, металлоискатель создает (или «индуцирует») некоторую электрическую активность в металле. Но потом Максвелл рассказывает нам еще кое-что интересное: если у нас есть электричество, кусок металла, он также должен создавать некоторый магнетизм. Итак, когда вы перемещать металлоискатель над металлическим предметом, магнитное поле исходящий от детектора вызывает появление другого магнитного поля вокруг металл.
Это второе магнитное поле вокруг металла, которое улавливает детектор. Металлоискатель имеет вторую катушку с проволокой в голове (известную как катушка приемника), который подключен к цепи, содержащей громкоговоритель. Когда вы перемещаете детектор о кусок металла, магнитное поле, создаваемое металлом, прорезает катушку. Теперь если вы перемещаете кусок металла через магнитное поле, вы создаете через него течет электричество (помните, так работает генератор). Итак, когда вы перемещаете детектор по металлу, течет электричество. через катушку приемника, заставляя динамик щелкать или пищать.Привет Престо, металлоискатель сработал, и вы что-то нашли! Чем ближе вы поднесете катушку передатчика к металлическому предмету, тем чем сильнее магнитное поле, которое создает в нем катушка передатчика, тем сильнее магнитное поле, которое металл создает в катушке приемника, тем больше ток течет в громкоговорителе, и тем громче шум.
Итак, спасибо, Джеймс Клерк Максвелл, за то, что помог нам увидеть, как работают металлоискатели — с помощью электричества для создания магнетизма, который создает больше электричества где-то еще.
Как мы видели выше, магнитные поля создаются изменяющимися электрическими полями, которые колеблются в определенном частота. Различные частоты дают лучшие или худшие результаты в зависимости от типа металл, который вы ищете, насколько глубоко вы ищете, из какого материала сделана земля (песок, земля или что-то еще) и так далее.
Хотя все металлоискатели работают примерно одинаково, преобразовывая электричество в магнетизм и обратно. опять же, они бывают трех основных типов.Самые простые подходят для всех видов общего назначения. металлоискатель и охота за сокровищами. Их называют детекторами VLF (очень низкой частоты) , потому что они используют одна фиксированная частота обнаружения, как правило, около 6–20 кГц (обычно менее 30 кГц). Вы также встретите детекторов PI (импульсная индукция) , которые используют более высокие частоты и импульсные сигналы. Как правило, они могут улавливать вещи глубже, чем детекторы VLF, но они не такие разборчивые и ничего подобного, как обычно используется.Третий тип известен как детектор FBS (полнополосный спектр) , который одновременно использует несколько частот — так что, по сути, это немного похоже на одновременное использование нескольких немного по-разному настроенных детекторов.
Фото: Разминирование. Этот армейский миноискатель (CyTerra AN / PSS-14) сочетает в себе сверхчувствительный импульсный металлоискатель и георадар в одном устройстве, портативный блок. Он может обнаруживать шахты с низким содержанием металлов и различать рудничный металл, несущественные металлические беспорядки и почву с высоким содержанием металлов.Фотография любезно предоставлена Армией США, опубликована на Flickr под лицензией Creative Commons (CC BY 2.0).
К сожалению, на этот вопрос нет точного ответа, потому что он зависит от множества факторов, в том числе:
Обычно металлоискатели работают на максимальной глубине около 20–50 см (8–20 дюймов).
Металлоискатели используются не только для поиска монет на пляже.Ты их можно увидеть в проходных сканерах в аэропортах (предназначенных для остановки люди, несущие оружие и ножи в самолетах или других безопасных местах, таких как тюрьмы и больницы) и во многих научных исследовать. Археологи часто неодобрительно относятся к неподготовленным людям, использующим металл. детекторы для нарушения важных артефактов, но при правильном использовании и с С уважением, металлоискатели могут быть ценным инструментом в исторических исследованиях.
Фото: Этот детектор палочкового типа, называемый SuperScanner, произведен компанией Garrett Metal Detectors. используется для проверки посетителей медицинской клиники в Афганистане.Он работает от встроенной 9-вольтовой батареи, которая обеспечивает около 60 часов непрерывной работы. Если вы обнаружите металл, детектор сообщит вам об этом с помощью комбинации мигающих светодиодных огней и трелей. Его длина 42 см (16,5 дюйма), а вес — 500 г (17,6 унции). Такие детекторы стоят около 200 долларов (100 фунтов). Фото Кристофера Адмира любезно предоставлено Армией США.
По всей видимости, металлоискатели появились во время убийства президента США Джеймса А. Гарфилда в июле 1881 года.Одна из пуль, нацеленных на президента, застряла внутри его тела, и найти ее не удалось. Пионер телефонной связи Александр Грэм Белл быстро собрал электромагнитное устройство для определения местоположения металла, называемое индукционными весами, на основе более раннего изобретения немецкого физика Генриха Вильгельма Дава. Хотя пуля не была найдена и президент позже умер, устройство Белла работало правильно, и многие люди считают его самым первым электромагнитным металлоискателем.
Изображение: Слева: Найди ту пулю! Этот эскиз Уильяма А.Скинкл из иллюстрированной газеты Фрэнка Лесли от 20 августа 1881 года показывает, что довольно много врачей (!) Использовали индукционные весы Белла, чтобы найти пулю, потерянную в теле президента. В комнате слева на столе находится оборудование, которое помечено как «прерыватель», «конденсатор» и «батарея» (коробки в задней части стола). Вы можете просто разглядеть провода, которые тянутся от нижней части изображения до кровати президента справа. Предположительно Александр Грэм Белл — бородатый мужчина справа разговаривает по телефону? Предоставлено Библиотекой Конгресса США.
Портативные металлоискатели были изобретены немецким инженером-электронщиком Герхардом Фишером (которого он также называл «Фишером»), когда он жил в Соединенных Штатах, и он подал заявку на патент на эту идею в январе 1933 года. Он назвал свое изобретение Металлоскопом — «метод и средство для индикации наличия захороненных металлов, таких как руда, трубы и т.п.» — и вы можете увидеть это на рисунке здесь. В том же году он основал Fisher Research Laboratory, которая и по сей день остается ведущим производителем металлоискателей.Доктор Чарльз Л. Гарретт, основатель компании Garrett Electronics, первым изобрел современные электронные металлоискатели в начале 1970-х годов. После работы в НАСА над программой высадки Аполлона на Луну Гаррет обратил свое внимание на свое хобби — любительскую охоту за сокровищами — и его компания произвела революцию в этой области, выпустив ряд инноваций, включая первый компьютеризированный металлоискатель с цифровой обработкой сигналов, запатентованный в 1987 году.
Изображение: Металлоскоп, запатентованный Герхардом Фишером (Fisher) в 1937 году, я раскрасил его, чтобы облегчить наблюдение.Катушка передатчика находится в красном квадрате спереди; катушка приемника находится в синем ящике сзади. Передатчик использует неслышимые сигналы частотой 30 000 Гц; приемник подает на наушники звуковые сигналы (с частотой около 500 Гц), как в современном металлоискателе. Катушки передатчика и приемника установлены под прямым углом друг к другу, поэтому приемник не принимает сигналы непосредственно от передатчика. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
Охотники за сокровищами всегда будут ценить подобные металлоискатели, потому что исторически ценные вещи обычно делались из металла.Но в мире безопасности уже недостаточно полагаться на металлоискатели как на единственное направление нашей деятельности. оборона. Например, люди, которые любят провозить оружие через службу безопасности, хорошо осведомлены что им придется проходить через металлоискатели, и они, вероятно, попробуют альтернативы, такие как керамика, пластиковые или углеродные ножи. Хотя уважаемые производители прилагают все усилия, чтобы обеспечить наличие мелких металлических деталей в рукоятки «неметаллических» ножей, именно поэтому ничто не мешает точить кусок пластика до импровизировать с ножом, поскольку полиция неоднократно нашел.Как же тогда обнаруживать неметаллические угрозы?
Одним из решений, принятых в аэропортах, является использование сканеров миллиметрового диапазона (MMS) для обнаружения металлических и металлических предметов. По сути, они работают как более безопасные версии рентгеновских аппаратов: волны проходят сквозь одежду, но отражаются нашими телами, и любое скрытое оружие (металлическое или иное) отображается в виде картинок на экране. Рентгеновские аппараты используют очень мощное излучение (с длинами волн примерно в нанометрах или миллиардных долях метра), что может быть опасно, если ваше тело поглощает их слишком много.Как следует из названия, сканеры миллиметрового диапазона используют гораздо более длинные волны размером 1–10 мм (примерно в 10 раз меньше, чем микроволны, отправляемые и принимаемые мобильными телефонами), которые на намного ниже на интенсивности и, следовательно, создают небольшой или нулевой риск для здоровья людей.
Даниэль Бернцвейг
Металлоискатель, который вы используете сегодня, имеет удивительно долгую историю. На самом деле история металлоискателя довольно интересна и даже связана с бывшим президентом!
Еще в середине 1800-х годов, после изобретения электричества, многие ученые, ученые и золотодобытчики начали экспериментировать с идеей разработки машины, которая могла бы определять местонахождение закопанного под землей металла.Подобное устройство было бы невероятно полезным для многих старателей, все еще ищущих золото после «золотой лихорадки», и, как следствие, могло бы сделать человека, первым усовершенствовавшего металлоискатель, очень и очень богатым.
Однако первый в истории металлоискатель не имеет ничего общего с поиском золота. Вместо этого он был использован в попытке спасти президента Джеймса Гарфилда после того, как он был застрелен в Вашингтоне, округ Колумбия, 2 июля 1881 года на железнодорожной станции Балтимор и Потомак Чарльзом Дж.Гито. Президент получил огнестрельное ранение в спину, но, к счастью, рана его не убила. К сожалению, врачи не смогли обнаружить пулю, и Гарфилд продолжал страдать.
Один из его посетителей в то время, Александр Грэм Белл, специально построил металлоискатель, чтобы попытаться найти эту пулю, но, к сожалению, его попытки не увенчались успехом. Оказывается, металлические пружины в кровати, на которой лежал президент Гарфилд, запутали машину и сделали ее практически бесполезной.19 сентября 1881 года президент Гарфилд окончательно скончался от инфекции от раны.
Хотя первый металлоискатель не помог спасти 20-го президента США, машина, созданная Александром Грэмом Беллом, была жизнеспособным металлоискателем и впоследствии стала прототипом, для которого с тех пор использовались все другие металлоискатели. исходя из. Изначально эти машины были действительно большими, сложными и работали на электронных лампах.Но они были полезны, и в результате их популярность продолжала расти. Самое главное, что эти ранние металлоискатели использовались для обнаружения и обезвреживания наземных мин и неразорвавшихся бомб по всей Европе после Первой и Второй мировых войн.
Примерно в то же время Герхард Фишер, основатель компании Fisher Metal Detectors, сделал важное открытие в своей работе над навигационными системами. Радиолучи, которые он использовал, искажались каждый раз, когда в этом районе находилась рудоносная порода. Пытаясь устранить недостатки в своей системе, он пришел к выводу, что этот тип технологии в меньшем масштабе может быть полезен в качестве металлоискателя.В 1925 году Фишеру был выдан патент на первый портативный металлоискатель, и он продал свою первую машину Фишера в 1931 году.
Несмотря на то, что Фишеру был выдан первый патент на металлоискатель, он лишь один из многих, кто усовершенствовал и усовершенствовал технологию, которая в настоящее время используется в вашем металлоискателе. Еще одним крупным игроком в разработке современных металлоискателей является Чарльз Гарретт, основатель компании Garrett Metal Detectors.По профессии инженер-электрик, Гаррет начал поиск металлов в качестве хобби в начале 1960-х годов. Перепробовав множество машин на рынке, он не смог найти ни одной, которая могла бы делать все, что он хотел. Так он начал работу над собственным металлоискателем. После долгих исследований он смог создать машину, которая устранила дрейф генератора, а также несколько уникальных поисковых катушек, которые он запатентовал, все из которых существенно революционизировали конструкцию металлоискателей до того момента.
Другие факторы, которые сильно повлияли на развитие металлоискателей в том виде, в каком мы их знаем сегодня, включают транзисторы, изобретенные в 1947 году Джоном Бардином, Уолтером Браттейном и Уильямом Шокли, а также дискриминаторы, новые конструкции поисковых катушек и беспроводные технологии.Все это и многое другое позволило металлоискателям стать легкими, портативными, простыми в использовании машинами для глубокого поиска, которые мы знаем сегодня.
Принимая во внимание количество игроков, как профессионалов, так и любителей, а также высокие темпы технического прогресса в целом, будущее металлоискателей можно только догадываться. Что можно почти гарантировать, так это то, что металлоискатели будут продолжать развиваться и меняться, чтобы находить еще больше сокровищ. Охотники за сокровищами просто не сдаются, и, как вы можете видеть из истории металлоискателей до этого момента, именно эти страстные, изобретательные люди сделали металлоискатели теми машинами, которыми они являются сегодня; и кто и дальше будет влиять на будущее металлоискателя.
© 2014 Detector Electronics Corp.
Представляем Multi-IQ
Multi-IQ — это последняя крупная технологическая инновация Minelab, которая может рассматриваться как объединение преимуществ производительности как FBS, так и VFLEX в новом сочетании технологий. Это не просто переработка одночастотного VLF и не просто другое название итерации BBS / FBS.
Multi-IQ обеспечивает высокий уровень точности идентификатора цели на глубине намного лучше, чем может достичь любой одночастотный детектор, включая переключаемые одночастотные детекторы, которые утверждают, что они многочастотные.Когда Minelab использует термин «многочастотный», мы имеем в виду «одновременный» — то есть более одной частоты передается, принимается И обрабатывается одновременно. Это обеспечивает максимальную чувствительность цели для всех типов и размеров целей, сводя к минимуму шум грунта (особенно в соленой воде). В настоящее время существует лишь несколько детекторов от Minelab и других производителей, которые можно отнести к классу настоящих многочастотных, каждый из которых имеет свои преимущества и недостатки.
Чем отличается Multi-IQ от BBS / FBS?
Multi-IQ использует группу основных частот, отличную от BBS / FBS, для генерации широкополосного многочастотного сигнала передачи, который более чувствителен к высокочастотным целям и немного менее чувствителен к низкочастотным целям.Multi-IQ использует новейшие высокоскоростные процессоры и передовые методы цифровой фильтрации для гораздо более высокой скорости восстановления, чем технологии BBS / FBS. Multi-IQ справляется с морской водой и условиями пляжа почти так же хорошо, как BBS / FBS, однако BBS / FBS все еще имеют преимущество в поиске высокопроводящих серебряных монет в любых условиях.
С помощью Multi-IQ мы можем добиться гораздо большей точности идентификации цели и повышения эффективности обнаружения, особенно в «труднопроходимой» местности. В «мягком» грунте одночастотный режим может работать адекватно, НО глубина и стабильные ID будут ограничены шумом грунта; в то время как Multi-IQ одновременно работает на нескольких частотах, обеспечивая максимальную глубину с очень стабильным целевым сигналом.В «сильном» грунте одна частота не сможет эффективно разделить целевой сигнал, что приведет к ухудшению результатов; тогда как Multi-IQ будет по-прежнему обнаруживать на глубине, теряя минимальную точность цели, как показано на этой диаграмме.
«Сколько одновременных частот?» , спросите вы, задавшись вопросом, является ли это критическим параметром. В последние годы компания Minelab проводит подробные исследования по этому поводу. Так же, как вы можете раскрасить карту множеством цветов, минимальное количество, позволяющее различать соседние страны, составляет всего четыре.Как и в случае с проблемой карты, возможно, более интересным является не максимальное количество частот, необходимое для достижения оптимального результата, а минимальное количество. Когда дело доходит до частот в детекторе, то, как частоты комбинируются И обрабатываются , теперь более важно, чем количество частот, для достижения еще лучших результатов.
Частотный диапазон Multi-IQ, показанный на этой диаграмме, применим как к извещателям серии EQUINOX, так и серии VANQUISH, во всех моделях.Нет прямой связи между отдельными отдельными частотами, показанными на диаграмме, и частотами, используемыми в Multi-IQ.
На приведенной выше диаграмме показан типичный диапазон чувствительности одночастотных детекторов по сравнению с полноспектральной чувствительностью, обеспечиваемой Multi-IQ. В то время как детектор, работающий на частоте 5 кГц, будет чувствителен к высоким проводникам, таким как большие серебряные мишени, тот же самый детектор будет особенно невосприимчивым к маленьким золотым самородкам (низким проводникам). И наоборот, детектор, работающий на частоте 40 кГц, имеет высокую чувствительность для мелкого золота и гораздо меньшую чувствительность для крупного серебра.Multi-IQ очень чувствителен ко всем целям во всем частотном диапазоне.
2. Как точно определить цель?
Медленно и методично проведите катушкой из стороны в сторону, удерживая ее на высоте от одного до двух дюймов над поверхностью.Перекрывайте каждый проход, продвигая поисковую катушку примерно на четверть или половину ее диаметра. Сканирование по прямой линии помогает поддерживать уровень поисковой катушки и равномерное перекрытие разверток, снижая при этом вероятность подъема поисковой катушки после каждого прохода. Прислушайтесь к пику звука. Удерживая катушку на высоте 1-2 дюйма над землей, медленно проведите ею вперед и назад по X-образной схеме. Отметьте, где звук становится самым громким. Цель должна быть расположена в центре воображаемого X.Многие современные металлоискатели оснащены электронной кнопкой определения местоположения. Прочтите руководство пользователя для получения полных электронных инструкций по определению местоположения.
3. Что мне нужно знать о батареях детектора?
Никель-кадмиевые (никель / кадмиевые) и металлогидриды никеля — это перезаряжаемые батареи, которые служат от 8 до 12 часов и стоят до 10 долларов каждая. Щелочные батареи — это одноразовые батареи, срок службы которых составляет от 25 до 30 часов и стоит около двух долларов каждая. Поскольку экстремальные температуры могут истощить аккумулятор, рекомендуется всегда иметь при себе запасной комплект аккумуляторов.В холодную погоду прикрепление аккумуляторного блока к ремню под курткой поможет сохранить аккумуляторы в тепле и сухости.
4. Что такое дискриминация?
Дискриминация относится к способности металлоискателя отклонять цель, например язычок и фольгу, или принимать цель, такую как монета или ювелирное изделие, на основе его металлического состава. Благодаря таким функциям, как Target Imaging и Tone ID, ваш детектор может сказать вам, какова ваша цель, еще до того, как вы когда-нибудь начнете копать.
5.Что такое истинный размер?
Истинный размер получается так же, как и истинная глубина. Несколько приемников в металлоискателе GTI добавляют дополнительные параметры идентификатора цели, а не только идентификатора материала. Однако в конечном итоге именно то, как несколько приемников связаны друг с другом, обеспечивает эти истинные измерения, а не просто их наличие. Истинный размер и глубина являются эксклюзивными функциями Garrett и возможны только с детекторами Garrett GTI, которые были разработаны для того, чтобы дать охотникам за сокровищами наиболее точную информацию о цели, прежде чем они начнут раскапывать.
6. Не снижается ли общая глубина при поиске с дискриминацией?
Да. Чтобы достичь максимальной глубины при поиске больших объектов размером с тайник, многие профессионалы охотятся в режиме All-Metal и используют большую поисковую катушку.
7. Какое значение имеет рабочая частота детектора?
Металлоискатель передает магнитную энергию в землю и определяет искажение магнитного поля из-за наличия металлического объекта.Частотный состав, временная форма и амплитуда этой магнитной энергии могут влиять на возможности обнаружения и общие рабочие характеристики. В современных металлоискателях используются две основные технологии обнаружения: одночастотный (также известный как непрерывная волна) и многочастотный (например, импульсная индукция и двухчастотный). У каждой технологии есть свои особенности обнаружения, понимание которых позволит вам выбрать правильный детектор для ваших нужд поиска сокровищ.
8.Действительно ли мне нужны наушники при поиске сокровищ?
Для максимального успеха и уединения при поиске сокровищ следует использовать наушники. Они незаменимы в шумных местах и улучшают восприятие звука, передавая звук прямо в уши.
9. Нужно ли мне больше одной поисковой катушки?
Поисковая катушка — важная часть вашего металлоискателя. Это плоский, обычно круглый диск, который генерирует магнитное поле и обнаруживает металлические цели в окружающей среде.Он расположен на конце штока и соединен с корпусом управления кабелем, намотанным на шток. Размер, глубина и выход энергии (мощность) магнитного поля определяются формой и размером поисковой катушки. Понимание целей, стоящих за поисковыми катушками различных размеров и форм, даст вам возможность выбрать лучшую поисковую катушку для правильного применения. Подробное описание типов и преимуществ дополнительных катушек можно найти в нашем техническом описании поисковых катушек.
10. Существуют ли какие-либо законы, регулирующие охоту за сокровищами?
Каждый квадратный дюйм собственности в Соединенных Штатах принадлежит частному лицу, группе, корпорации, правительственному органу и т.