В октябре в нашей Симферопольской детской астрономической обсерватории прошла конференция, посвященная годовщине полета первого спутника. И всех кружковцев обожаемого Катей Катей кружка “Путь в астрономию” тоже пригласили участвовать. Катя и сама не против, кроме того, я с детства учу ее быть активной, участвовать и записываться во все: “за любой кипишь, кроме голодовки”:)
Тему выбрали быстро – нам всем интересна не столько история космонавтики, сколько современное ее состояние и даже будущее. Поэтому мы сразу подумали о ГЛОНАСС – российской спутниковой сети, которая сейчас активно развивается. Что тут надо делать и о чем говорить сразу понятно: о самой сети, о технической составляющей (сколько чего, характеристики аппаратов и т.п.), о том, зачем она нужна, об истории развития, о ее отличии от аналогичной сети GPS.
А дальше уже дело за малым – почитать про ГЛОНАСС в интернете, собрать все факты в презентацию, хорошо его отрепетировать (Катя наизусть доклады не учит, но готовит дома так, чтобы можно было рассказывать без бумажки).
Самодельный макет спутника ГЛОНАСС |
Конечно же, мы с мужем помогали Кате готовится к конференции, поэтому это получился семейный проект. Но в таких случаях я всегда уделяю особое внимание тому, чтобы во-первых, тема была посильна для понимания, а, главное, интересна и нужна самой Кате. Иначе все это изначально не имеет смысла – не нужен же нам очередной диплом или грамота! Во-вторых, я стремлюсь, чтобы на всех этапах работы Катя принимала максимальное участие. Ведь это не родители делают проект, а дочка. Родители только помогают! С нацеливанием на то, что еще несколько таких работ под нашим руководством, и можно будет отпустить Катю “в свободное плавание”. По крайней мере, многие сообщения на школьные уроки она уже готовит сама, а ведь еще год назад я и представить себе не могла, что дочка будет обходиться в этом деле без меня:)
Итак, сначала мы вместе с Катей подготовили сообщение. И проиллюстрировали его презентацией. Спасибо сайту Информационно-аналитического центра ГЛОНАСС – там мы нашли отлично структурированную информацию, которая прекрасно легла в основу презентации. Сообщение на конференции должно было быть коротким, минут на 5-7, поэтому и в презентации всего 9 слайдов: самое нужное о ГЛОНАСС. Без особых технических подробностей, которые были бы скучны детям. Дети на астрономии у нас, конечно, все умненькие и продвинутые, но все же им по 8-12 лет, поэтому сильно “загружать” их не стоит:)
Презентацию вы можете скачать и посмотреть на яндекс.диске вот по этой прямой ссылке //yadi.sk/i/qGQw1hnU3PLm95 – я выложила ее в свободный доступ. Только лучше сначала сохранить ее к себе на компьютер, а то в просмотрщике тексты и картинки могут “разбегаться”.
И эту же презентацию я добавила на страницу “ПРЕЗЕНТАЦИИ” моего блога – надеюсь, вы уже бывали на ней. Там у меня собраны уже более 200 компьютерных презентаций, которые я делала для своих детей, и с детьми, и дети сами на самые разные темы и возраста: от 0 до 12 лет. Я презентации постоянно добавляю, так что заглядывайте:)
Слайды из компьютерной презентации о системе ГЛОНАСС |
Ну а когда само сообщение было готово, пришла очередь его визуализации. Этот этап, конечно, был для Кати самым увлекательным: мы всей семьей подумали и решили сделать своими руками макет одного из спутников системы ГЛОНАСС.
Тут уж с Катей занимался папа – это его вклад в воспитание детей мастерить с ними всякие разные штуки:) Вот тут я писала о том, что в разные годы делал Антон с детьми и для детей: Звездоскоп, Кормушка с видеотрансляцией, Робот красит яйца, Микроскоп из мобилки, Макет космического аппарата “OSIRIS-REx“, Проволочные головоломки, Автоукачивалка на детскую кроватку, робот из ненужных деталек и Робот-компьютерная мышка, Робот-паук, Модель электрического мотора, Радистский (телеграфный) ключ, Водяная ракета, Паровая турбина, Светофор, Перископ.
А вот в этот раз – спутник ГЛОНАСС:)
Макет спутника ГЛОНАСС |
Трудно поверить, но все это сделано из картона – одной картонной коробочки, оклеенной золотой фольгой (как реальный спутник), и картонных же “солнечных панелей”, надетых на толстую алюминиевую проволоку.
Катя изо всех сил помогала при сооружении макета. Например, солнечные батареи – это полностью ее работа. Надо было наклеивать с обоих сторон синюю цветную бумагу и расчерчивать ее белым карандашом на квадратики строго по линейке. Целых 8 штук для одной и второй стороны! Не у каждого взрослого хватило бы терпения:)
Процесс работы над спутником:) |
Вот все элементы готовы – остается только их собрать в единый агрегат. Для правдоподобности пришлось постоянно сверяться с изображением реального спутника и стараться максимально повторить все детали.
Спутник в еще не собранном виде выглядит как просто картонная коробка и четыре картонных прямоугольника. |
То, что картон был гофрированным, очень пригодилось при сборке конструкции – солнечные панели на проволоку крепились очень легко: методом продевания проволоки в отверстия картонок.
Крупный план: солнечные батареи |
Проволоку проткнули через коробку-корпус спутника насквозь, а чтобы не ездила – закрепили термоклеем.
Крупный план: место крепления батарей к корпусу |
А в конце самое интересное – сделать антенны и прочее оборудование спутнику.
В ход пошли корпусы от шариковых ручек, винтики, которые Катя собственноручно красила белым акрилом, и даже, как видите, мерный стаканчик от какого-то лекарства пригодился:)
Крупный план: “оборудование” спутника |
Обладательница спутника счастлива 🙂 Еще бы, он почти как настоящий, вот-вот полетит:)
Спутник системы ГЛОНАСС готов! |
А на следующий день была конференция в обсерватории. Детей было много и много макетов. Но наш самый классный – это Катя так заявила:) Всех разбили на группы по 20 человек. И несмотря на то, что Катя выступала с докладом последней двадцатой, рассказала она все как надо – выступать перед залом она любит и умеет. Правда, волнуется перед этим сильно, хотя уже должна была привыкнуть, за три-то с лишним года своей активной школьной жизни:)
А я вспоминаю, как маленькая Катя всегда крутилась рядом и завидовала старшему брату Вите, когда он точно так же готовил исследовательские проекты в МАН. Как любила слушать репетиции его докладов:) Особенно астрономических – он делал два таких в разные годы: Доклад о космических кораблях 6 класс, доклад “Миссия к астероиду Бенну” 8 класс. И вот теперь ее мечта сбылась – она сама выступает перед залом со своим собственным докладом и своим собственным спутником:)
Участники конференции по астрономии (фото с сайта МАН “Искатель”) |
Другие наши самодельные космические корабли можно посмотреть тут:
Космос и его чудесные просторы интересны всем детям. Действительно, каждый ребенок с интересом относится к изучению космоса. Но стоит сказать о том, что изучать космос еще интереснее, если мастерить космические поделки. Поэтому здесь мы решили поговорить о том, какие поделки про космос своими руками из подручных материалов вы можете сделать со своим чадом. В этой статье мы собрали только лишь самые лучшие идеи.
Сейчас мы с вами поговорим о том, как сделать поделку про космос своими руками. Конечно же, в нашей статье вы сможете найти не только простые поделки, но и самые оригинальные, которые может быть станут украшением вашего дома или украшением выставки.
Аппликации на космическую тематику.
Дошкольники перед школой должны развивать мелкую моторику. Поэтому для космической аппликации подготовьте крупу либо бобы фасоли.
Чтобы у ребенка получилась красивая поделка, прежде всего покажите ему планету Юпитер. Для этого воспользуйтесь какой-нибудь картинкой.
После чего из белого картона вырежьте круг и задекорируйте его фасолью разного цвета. Конечно же, в этой работе необходимо использовать клей.
Для создания следующей аппликации вам понадобятся одноразовые тарелочки в количестве 3-ех штук. Из одной тарелочки сделайте солнышко, а из другой планету — Земля. Из третьей тарелочки сделайте месяц.
Возьмите 2 листа картона. Один должен иметь темный оттенок, а другой светлый. Украсьте картон облаками и звездами.
Для следующей аппликации раскрасьте лист альбома темно-синей, либо черной краской. Из цветной бумаги вырежьте отдельных персонажей. Создайте композицию.
Изобразить солнечную систему очень просто. К белому листу альбома приклейте несколько пуговиц и кружочек желтого цвета.
Космическая ракета.
Красивая поделка про космос, которая была создана своими руками может быть объемным произведением. Для того, чтобы смастерить такую ракету потребуется большой картонный корпус. Его можно сделать из длинного рулона либо из парочки таких картонных рулонов.
Корпус ракеты стоит оклеить бумагой белого цвета. К корпусу также приложите наконечник, который имеет форму конуса. Наконечник также оклейте белоснежной бумагой.
В дальнейшем при помощи фломастеров или красок вы разрисуете свою ракету. Сейчас же, стоит сделать сопла ракеты. Для этого нужны рулоны из картона большего размера. Оклейте их белой бумагой и приложите их к ракете и приклейте. Сопла должны иметь наконечники, однако они не должны быть острыми.
Для ракеты стоит сделать также баки. Для них используйте рулоны меньшего размера.
Украшать ракету можно на свое усмотрение. Оклеивайте их или украшайте фломастерами.
Мини-ракета.
Если дома нет огромного конуса, то можно сделать красивую космическую ракету из рулончика туалетной бумаги. Посмотрите на мастер-класс, который поможет вам сделать данную поделку. Как видите, здесь нет не чего сложного.
Роботы из банок.
В этой статье вы сможете найти поделки про космос, которые очень легко смастерить своими руками. Стоит только лишь взглянуть на фото и в голове у вас появятся те мысли, которые помогут создать вам что-то необыкновенное.
Достаточно просто смастерить роботов из старых консервных банок, которые необходимо отмыть и очистить от этикеток.
Робот из коробок.
Если дома есть коробки, то из них можно сделать большого робота. Такой робот, наверняка, займет достойное место на конкурсной выставке.
Инопланетяне из пластилина.
Вашему ребенку понравится лепить инопланетянин из пластилина. При этом можно использовать пластилин самых разнообразных цветов.
Космические спутники.
Для космической выставки можно изготовить массу различных поделок. Но если выставка будет проводиться в детском садике, то детки могут изготовить космические спутники из пенопластовых шариков и зубочисток.
Космические мобили.
Если вы хотите поразить всех окружающих необычным изделием, то помогите своему ребенку смастерить разнообразные космические мобили. Конечно же, на создание такой поделки придется потратить много времени. Кроме того, вам для создания поделки понадобится:
Ход работы:
Посмотрите на то, какими могут быть космические мобили.
Планета своими руками.
Познакомьтесь с матер-классом, который поможет сделать оригинальную поделку.
В заключение
Поделки на космическую тематику могут быть самыми разнообразными. Вы можете присмотреться к идеям нашей публикации или создать что-то особенное. В общем, помните о том, что если приложить фантазию и уделить этому процессу внимание, то можно получить самые оригинальные поделки, которые поднимут настроение и заставят восхищаться.
Наши комплекты космических спутников и образовательные курсы обеспечивают практическое и увлекательное обучение и вдохновляют студентов на увлекательную карьеру в космосе и STEM
AmbaSat создает комплекты космических спутников и обучающие курсы. Набор космических спутников AmbaSat-1 содержит все необходимое для создания собственного космического корабля, а наши дополнительные пакеты для запуска ракет запустят ваш спутник в космос.
AmbaSat предназначены для частных лиц, студентов, школ, университетов и предприятий. Выберите один из 8 датчиков, дизайн с открытым исходным кодом, простота сборки и кодирования.
Курс «Создай свой собственный космический спутник» из 10 уроков: включает видео, планы уроков, буклет для учащихся, руководство и задания для каждого урока.
AmbaSat обеспечивают экономичные запуски на низкую околоземную орбиту, а также новаторские испытания и экспериментальные возможности.
Курс AmbaSat Space Satellite охватывает темы и приложения, охватывающие всю учебную программу, от программирования до пайки, от исследований до командной работы, от аналитики до проектирования.
Продолжительность урока 60-90 минут с сочетанием теории и практики.
Карьерный рост, вычислительная техника и ИКТ, математика и статистика, драма и др.
Заметки преподавателя, учебники для учащихся, планы уроков, презентации и видео на YouTube
Доступны пакеты «Земля, небо и космос». Наборы спутников включены для каждого учащегося
Решение проблем, работа в команде, критическое мышление, творчество, презентации и многое другое
Для учащихся 12-16 лет. Поощрение карьеры в космосе и STEM
Школы
Академии, тресты и частные школы
Университеты
Индивидуальные учебные модули, запуск высотных воздушных шаров
Поставщики образовательных услуг
Обучение на курсах для инструкторов по всем вашим каналам
Группы специалистов
Скауты, гиды, МЕЙКЕРЫ и группы специалистов по интересам
Skyrora XL — трехступенчатая ракета-носитель, предназначенная для размещения полезной нагрузки на высоте от 200 до 1000 км
Высота Skyrora XL составляет 22,7 метра, а общая взлетная масса превышает 55 000 кг
Инкапсулированный модуль полезной нагрузки с толкающими пружинами, который доставит AmbaSat-X на НОО
Вот небольшая подборка самых популярных вопросов. Пожалуйста, посетите нашу страницу часто задаваемых вопросов для получения полного списка всех ваших часто задаваемых вопросов.
Ваш космический спутник AmbaSat-1 выйдет на низкую околоземную орбиту (НОО) на высоте около 300 км и останется в космосе примерно на ОДИН месяц.
Как мой спутник попадает на ракету?После того, как вы закончите сборку и программирование вашего AmbaSat-1, вы вернете его нам, и мы позаботимся об установке ракеты.
Как я могу увидеть данные со своего спутника? Каждый AmbaSat поставляется с собственной «приборной панелью». Это веб-приложение, которое позволяет вам просматривать все данные телеметрии вашего спутника в одном месте.
Твоя судьба
Все 30 студентов получили огромное удовольствие от 10-недельного курса, а команда AmbaSat усердно работала над тем, чтобы уроки были хорошо сбалансированы как с практической, так и с теоретической деятельностью.
Mr M Fairbairn
Учитель, школа Egglescliffe
Здесь вы можете узнать больше о том, что мы делаем прямо сейчас, о планах на будущее, интересных событиях и наших последних новостях и событиях!
AmbaSat в доме BringItOnNE BringItOn North East – Beacon of Light, Сандерленд. 12-13 октября 2022 г. У нас были фантастические 2 дня выставки…
Подробнее
Информационный бюллетень о запуске AmbaSat – выпуск 2, август 2022 г. Home Admin 2 августа 2022 г. Добро пожаловать во второй выпуск о запуске AmbaSat…
Подробнее
AmbaSat и Barclays Eagle Labs с C4DI Home AmbaSat хорошо знакома с викторианскими тюрьмами, благодаря нашему постоянному партнерству с C4DI,…
Подробнее
9
Все, о чем я прошу, это успешный запуск, чистый радиосигнал и жизнь, достаточная для достижения этой цели.
Если высотные воздушные шары недостаточно высоки, если вы чувствуете разочарование темпами развития космоса или если вам просто очень-очень нравятся ракеты и техника, я думаю, что запуск собственного спутника — отличное решение . Но сначала, что вы хотите, чтобы ваш спутник делал? Вот 7 ключевых вещей, которые вам нужно знать, прежде чем запускать свой личный космический корабль на орбиту со скоростью 17 000 миль в час.
Пикоспутники , по определению, очень маленькие и легкие спутники. Любой пикоспутник будет иметь эти основных компонента :
Прародителем класса пико является CubeSat , архитектура с открытым исходным кодом, позволяющая упаковывать все, что угодно, в куб размером 10 см × 10 см × 10 см.
CubeSat — спутник милый, как тыква. Forbes сообщил об одном поставщике, Pumpkin Inc. , который поставляет готовые CubeSat. CubeSat сам по себе является спецификацией, а не готовым аппаратным обеспечением, поэтому Pumpkin решил собирать готовые комплекты и продавать их. Если у вас есть собственная ракета для запуска CubeSat, за 7500 долларов вам продадут комплект CubeSat.
Точно соответствует TubeSat компании InterOrbital Systems. InterOrbital Systems (IOS) имеет преимущество по соотношению цена/производительность, поскольку они предлагают запуск по той же цене. Но похоже, что ни IOS, ни Pumpkin не предоставляют готовые изделия, а только наборы. Таким образом, все еще требуется работа для любителей, но комплекты устраняют необходимость в проектировании и оставляют только забавную часть сборки и интеграции.
TubeSat и CubeSat, два варианта пикоспутника, четверти показаны для масштаба TubeSat и CubeSat, конечно, немного отличаются, и я безумно рад, что оба продвигают идею платформенных комплектов. Это большой шаг в коммерциализации космических исследований. Даже если мини-CubeSat выглядит жутко похожим на коробку Hellraiser Lemarchand.
Если вы строите CubeSat, обеспечить запуск ракеты несложно, просто дорого. Типичная стоимость запуска CubeSat оценивается в 40 000 долларов. Есть несколько коммерческих поставщиков, обещающих будущие ракеты CubeSat, при условии, что они завершат разработку. Различные проекты НАСА и Международной космической станции принимают некоторые предложения с использованием архитектуры CubeSat. Каждый год все больше компаний входят в бизнес частных запусков, поэтому перспективы запуска становятся все более надежными.
Архитектура TubeSat от InterOrbital Systems представляет собой альтернативную схему. В настоящее время поддерживается только InterOrbital, что очень выгодно. Вы получаете схемы, основные аппаратные компоненты и запуск их все еще находящейся в разработке ракеты по единой цене в 8000 долларов. TubeSat использует немного более длинную шестиугольную архитектуру, 12 см в длину и 4 см в диаметре.
Вы также можете работать с пользовательской архитектурой, если у вас есть доступ к запуску ракеты (возможно, через колледж или университет), но в настоящее время основными двумя игроками являются открытая спецификация CubeSat и частная альтернатива TubeSat.
Куда пойдет ваш пикоспутник? Почти наверняка ваш пикоспутник выйдет на низкую околоземную орбиту (LEO) , а это широкий диапазон от 150 до 600 км. В этом регионе также находится множество научных спутников и Международная космическая станция (МКС). Он находится внутри и ниже ионосферы, очень, очень тонкой части атмосферы, которая также совпадает с большей частью магнитного поля Земли.
Магнитное поле Земли защищает нас от самой яростной активности Солнца. Высокоэнергетические частицы, выбросы вспышек и выбросы корональной массы (КВМ; в основном капли солнечного вещества) шунтируются магнитным полем, прежде чем они достигают земли. Там, где силовые линии магнитного поля наклоняются около полюсов, эта энергия выражается в виде полярного сияния.
Выше ионосферы космическая среда может быть враждебной из-за солнечной активности. Ниже него радиационные риски значительно ниже. Вот почему МКС остается на НОО. LEO, в глубине души, настолько безопасен, насколько это возможно в космосе. Там же, скорее всего, будет жить ваш пикоспутник.
Типичная орбита НОО имеет примерно 90-минутный период . То есть он вращается вокруг Земли один раз в 90 минут, делая примерно 15 витков в сутки . Орбиты могут располагаться вблизи экватора Земли (экваториальные орбиты) или петлять от Северного к Южному полюсу (полярные орбиты). Точно так же орбиты могут быть почти круговыми или иметь большой эксцентриситет — приближаться к Земле на одном конце орбиты, а затем удаляться на другом.
Ваша орбита полностью определяется тем, что продал вам поставщик ракет. На уровне любителя вы, скорее всего, получите стандартную 250-километровую или около того почти круговую орбиту, либо экваториальную, либо полярную. Такая орбита длится (из-за сопротивления разреженной ионосферы) из От 3 до 16 недель до того, как спутник совершит огненный вход в атмосферу.
При массе пикоспутника это означает, что ваш спутник взлетит и не вернется. У вас есть менее трех месяцев для сбора данных. После этого пикоспутник, по сути, аккуратно испарится при входе в атмосферу (без риска космического мусора!)
Ионосфера называется так потому, что она представляет собой очень тонкую плазму электрически заряженных атомов (ионов) и электронов, возникающую из-за ультрафиолетового (УФ) излучения Солнца. Технически она простирается примерно от 50 км до более чем 1000 км (спасибо Википедии!), но НОО начинается со 150 км — ниже вы не сможете поддерживать стабильную орбиту. Ионосфера, как уже упоминалось, управляется солнечной активностью. Часть, обращенная к Солнцу, имеет больше ионизация ; кроме того, солнечная активность может сильно влиять на его поведение. Есть также провалы в линии магнитного поля, приводящие к увеличению радиации на более низких высотах. Мы упомянули полюса и такие регионы, как Южно-Атлантическая аномалия (ЮАА), также имеют силовые линии, которые падают ниже.
Если вы отправляете датчики, вы должны убедиться в нескольких вещах:
Металлическая пластина на НОО будет циклически изменять от –170°C до 123°C в зависимости от ее солнечной стороны и времени пребывания на солнце. Если ваш пикоспутник вращается, это немного выровняет распределение тепла, но это предполагаемый диапазон. Примерно половину своего времени орбита проводит под солнечным светом, а другую половину — в тени Земли, поэтому поведение температуры заслуживает моделирования.
Поскольку пикоспутник вращается, этот диапазон, к счастью, меньше (поскольку тепло успевает распределиться и рассеяться), и при 90-минутной орбите вы должны циклически проходить через три диапазона: слишком холодно для регистрации; переходные области, где датчик возвращает достоверные, медленно изменяющиеся данные; и, возможно, перенасыщение на высоких частотах. При необходимости можно добавить нагреватель — на спутниках используются нагреватели и охладители в зависимости от инструмента и облицовки.
Таким образом, термодатчик (например, датчик марки microDig Hot), работающий при температуре от –40°C до 100°C, будет достаточным. Диапазон от –40°C до 100°C является допустимой областью для измерения. В любом случае, за пределами этого диапазона остальная часть спутниковой электроники может иметь проблемы.
Точно так же датчик обнаружения света для вращающегося пикоспутника, скорее всего, будет возвращать только бинарный сигнал: сверхяркое Солнце в поле зрения и Солнце не в поле зрения. Таким образом, все, что он будет измерять, — это время, когда Солнце находится в поле зрения. Функция датчиков света будет в значительной степени бинарной, чтобы улавливать циклы Солнце-темнота по мере его вращения, а также общий цикл день/ночь на орбите. Если есть небольшой завал на спутник, тем лучше. Эти световые датчики обеспечат базовое измерение положения и акробатики спутника. Если вы хотите измерить фактический уровень освещенности, в вашем проекте должно быть убедитесь, что Солнце не затмевает ваш детектор .
Напряженность поля ионосферы составляет порядка 0,3–0,6 Гс с флуктуациями 5 %. Для полярной орбиты у вас будет более высокая изменчивость и более сильные магнитные поля, чем на экваториальной орбите (поскольку силовые линии магнитного поля Земли наклоняются вблизи полюсов, отсюда и полярные сияния). Если вы хотите измерить флуктуацию, а не напряженность поля, вам необходимо захватить сигналы 0,06–0,1 Гс . Датчик Холла за 10 долларов плюс операционный усилитель могут измерять отклонения до 0,06 Гс, если нет сильного внешнего магнитного поля. Ниже этого лимитирующим фактором, скорее всего, будет шум от цепей вашего датчика, а не от самого датчика.
Срок действия миссии короткий (менее трех месяцев), поэтому можно не беспокоиться о совокупном уроне. Еще в школе я моделировал радиационные повреждения, и оказалось, что современная электроника на удивление надежна в коротких временных масштабах. В первую очередь у вас будет 90 193 одиночных сбоев (SEP) 90 194, которые скремблируют датчик или компьютер, но, поскольку вам, вероятно, не требуется 100% время безотказной работы, это не должно быть проблемой. Фактически, сбои добавят интересный характер вашим производным данным. Если вы встретите, скажем, солнечная буря , будет интересно посмотреть, как датчики справятся с этим, либо с насыщением, либо с ложными сигналами. Пропорциональный счетчик или эрзац-эквивалент (например, microDig Reach) может измерять количество этих частиц.
И, наконец, самое важное, что нужно знать:
Какого черта вы хотите, чтобы ваш пикоспутник делал? Вы можете аккуратно разбить типичный выбор пикоспутников на научные миссии, инженерные миссии и произведения искусства. Научная полезная нагрузка измеряет вещи. Инженерная полезная нагрузка тестирует аппаратное или программное обеспечение. Художественный проект воплощает высокую концепцию. Мы посетим каждый.
Во время научной миссии ваш пикоспутник что-то измерит. В основе науки лежит измерение. Вы можете выполнять три типа миссий: наведение, на месте и инженерные постройки.
Миссия наведения похожа на телескоп. Ваш пикоспутник указывает на интересующий объект — Солнце, Луну, звезды, фон неба или Землю — и наблюдает за ним. Обратите внимание, что для , указывающего на Землю, требуется лицензия — ее нетрудно получить, но конфиденциальность защищена в хобби-пространстве.
Вы можете указать пальцем в произвольном порядке, но это не очень полезно. Вы можете установить режим съемки , в котором вашему пикоспутнику придается определенная ориентация на его орбите, так что на каждой орбите он движется по небу предсказуемым образом. Или, вы можете сделать активное наведение, заставив пикоспутник смотреть туда, куда вы хотите.
Активное наведение довольно сложно. Вы должны очень точно знать свою позицию. Использование инерциальных ориентиров — знание начальной орбиты плюс внутреннее предсказание движения спутника — является неточным для целей наведения датчиков. Поэтому для наведения обычно требуются какие-то астротрекеры. Это два или более широкоугольных телескопа, которые отображают небо и сравнивают его с бортовым каталогом известных ярких эталонных звезд.
Отслеживание звезд технически сложен и, вероятно, превышает ограничения по весу и конструкции типичного пикоспутника. Однако см. «Инженерное дело!» ниже, чтобы узнать больше об этом.
Более распространенное научное использование пикоспутников – измерения на месте . Это использование датчиков, которые измеряют область, в которой находится спутник, не требуя наведения. Термометр является прекрасным примером детектора на месте. Он измеряет температуру, и вам не нужно точно наводить его, чтобы знать, что он работает.
Другие измерения на месте с LEO могут включать в себя электрическое и магнитное поле в ионосфере, свет от Солнца или отраженное свечение Земли, измерение плотности ионосферы или отслеживание кинематики вашей орбиты и позиционирования (как вы движетесь).
Или, может быть, вы не хотите измерять что-то с научной точки зрения, вы просто хотите что-то построить. Это инженерия.
Инженерный пикоспутник использует платформу, чтобы опробовать некоторые новые концепции космической аппаратуры или дать вам возможность попрактиковаться в создании собственных вариантов известной космической аппаратуры.
Вы можете сделать пикоспутник для проверки любого из аппаратных компонентов . Новая система питания, новый метод позиционирования, новый тип радио- или ретрансляционной связи, новые датчики — любой компонент спутника может быть построен и улучшен.
Три унции пригодных для полета приборовНекоторые проекты пикоспутников включали испытания — в небольшом масштабе — новых концепций двигателей спутников , начиная от ионных двигателей и заканчивая солнечными парусами. Хотите испытать надувную космическую станцию в миниатюре или посмотреть, сможете ли вы сделать пикоспутник, который разворачивается, образуя большую точку отражения радиолюбителей? Построить это!
Другим инженерным мотивом может быть тестирование определенных компонентов: например, сравнение изготовленной на заказ электронной установки с готовым коммерческим компонентом (COTS), чтобы увидеть, можно ли сделать спутники (любого размера) более рентабельными. Или вы можете протестировать новые методы сжатия данных или альтернативные методы выполнения встроенных операций.
Инновации в операциях — это подмножество инженерных целей, заслуживающих дальнейшего изучения. Пикоспутники можно использовать для проверки координации созвездия спутников. Они могут быть испытательными стендами для изучения орбитальной механики или уроками скоординированных спутниковых операций. Как самый дешевый способ получить доступ к космосу, они являются отличными испытательными стендами для создания прототипов новых способов работы со спутниками, прежде чем переходить к миссиям стоимостью в миллион долларов.
Наконец, есть концепты. Мой собственный «Проект Каллиопа» TubeSat собирает измерения ионосферы на месте и передает их на Землю в виде музыки. Этот процесс называется озвучиванием. Цель состоит в том, чтобы вернуть ощущение ритма и уровня активности пространства, а не числовые данные, чтобы мы могли понять, как ведет себя система Солнце-Земля.
Вы не настоящая миссия, пока у вас нет собственной нашивки полета.Вы можете запустить спутник, чтобы сделать что угодно. Отправить прах в космос. Поднимите гималайский молитвенный флаг. Запустите свое титановое обручальное кольцо на орбиту. Любая идея искусства, музыки или гибрида искусства/музыки/науки приветствуется, потому что это ваш спутник. Просто дайте ему цель или полезность, а не просто зрелище запуска собственного спутника.
Определение науки (любезно предоставлено science20.com/skyday)Вот задание по проектированию, в котором вам предлагается изобрести спутник. Дело не в том, умеете ли вы строить, а в том, можете ли вы придумать и наметить идею, которая стоит того, чтобы ее реализовывать в первую очередь .
Выберите одну из десятилетних целей для наблюдения за Землей, гелиофизики, астрономии или планетологии и разработайте концепцию миссии для выполнения этой задачи с использованием небольшой спутниковой платформы — NASA SMEX или меньше.
Изобретите свой спутник и сделайте пятиминутную презентацию , которую вы представите НАСА, чтобы запросить финансирование. Ограничьтесь спутником с одним-двумя (максимум) приборами. Вот несколько справочных ссылок на десятилетия:
Одним из примеров десятилетней цели наблюдения Земли может быть:
Изменение ледяных щитов и уровня моря. Произойдет ли катастрофическое разрушение основных ледяных щитов, в том числе ледников Гренландии и Западной Антарктики, и если да, то как быстро это произойдет? Каковы будут временные закономерности повышения уровня моря в результате?
Хорошая презентация может включать:
Чтобы оценить хорошую подачу, подумайте:
Это мастерство как деловых, так и академических предложений, где вы должны не только убедить аудиторию в том, что вы подходите для выполнения задания, но и в том, что само задание стоит того, чтобы его выполнить!
Создание собственного пикоспутника — это не только средство для достижения цели, но и сама по себе достойная цель. Даже если вы никогда не запустите его, навыки и опыт, которые вы приобретете при создании собственного настоящего спутника, могут стать для вас потрясающим опытом.